WaferLLM: Large Language Model Inference at Wafer Scale

Abstract

Emerging AI accelerators increasingly adopt wafer-scale manufacturing technologies, integrating hundreds of thousands of AI cores in a mesh architecture with large distributed on-chip memory (tens of GB in total) and ultra-high on-chip memory bandwidth (tens of PB/s). However, current LLM inference systems, optimized for shared memory architectures like GPUs, fail to exploit these accelerators fully. We introduce WaferLLM, the first wafer-scale LLM inference system. WaferLLM is guided by a novel PLMR model (pronounced as Plummer) that captures the unique hardware characteristics of wafer-scale architectures. Leveraging this model, WaferLLM pioneers wafer-scale LLM parallelism, optimizing the utilization of hundreds of thousands of on-chip cores. It also introduces MeshGEMM and MeshGEMV, the first GEMM and GEMV implementations designed to scale effectively on wafer-scale accelerators.Evaluations show that WaferLLM achieves up to 200× higher accelerator utilization than state-of-the-art methods. Leveraging a wafer-scale accelerator (Cerebras WSE2), WaferLLM delivers GEMV operations 606× faster and 16× more energy-efficient than on an NVIDIA A100 GPU. For full LLM inference, WaferLLM achieves 10-20× speedups over A100 GPU clusters running SGLang and vLLM. These advantages are expected to grow as wafer-scale AI models, software, and hardware continue to mature. WaferLLM is open-sourced on GitHub.

Publication
In USENIX Symposium on Operating Systems Design and Implementation (OSDI) 2025
Congjie He
PhD Student
Yeqi Huang
PhD Student
Luo Mai
Luo Mai
Associate Professor

My research interests include computer systems, machine learning systems and data management.

Related