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Abstract

Gradient-based Meta-RL (GMRL) refers to methods that maintain two-level op-
timisation procedures wherein the outer-loop meta-learner guides the inner-loop
gradient-based reinforcement learner to achieve fast adaptations. In this paper, we
develop a unified framework that describes variations of GMRL algorithms and
points out that existing stochastic meta-gradient estimators adopted by GMRL are
actually biased. Such meta-gradient bias comes from two sources: 1) the composi-
tional bias incurred by the two-level problem structure, which has an upper bound
of O

(
𝐾𝛼𝐾 �̂�In |𝜏 |−0.5) w.r.t. inner-loop update step 𝐾, learning rate 𝛼, estimate

variance �̂�2
In and sample size |𝜏 |, and 2) the multi-step Hessian estimation bias Δ̂𝐻

due to the use of autodiff, which has a polynomial impact O
(
(𝐾 − 1) (Δ̂𝐻 )𝐾−1) on

the meta-gradient bias. We study tabular MDPs empirically and offer quantitative
evidence that testifies our theoretical findings on existing stochastic meta-gradient
estimators. Furthermore, we conduct experiments on Iterated Prisoner’s Dilemma
and Atari games to show how other methods such as off-policy learning and
low-bias estimator can help fix the gradient bias for GMRL algorithms in general.

1 Introduction

Meta Learning, also known as learning to learn, is proposed to equip intelligent agents with meta
knowledge for fast adaptations [30]. Meta-Reinforcement Learning (RL) algorithms aim to train RL

*Equal contribution, the order is determined by flipping a coin. See Appendix J for more details.
†Corresponding author.
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agents that can adapt to new tasks with only few examples [5, 10, 16]. For example, MAML-RL
[10], a typical Meta-RL algorithm, learns the initial parameters of an agent’s policy so that the agent
can rapidly adapt to new environments with a limited number of policy-gradient updates. Recently,
Meta-RL algorithms have been further developed beyond the scope of learning fast adaptations. An
important direction is to conduct online meta-gradient learning for adaptively tuning algorithmic
hyper-parameters [39, 41] or designing intrinsic reward [42] during training in one single task.
Besides, there are Meta-RL developments that manage to discover new RL algorithms by learning
algorithmic components or other fundamental concepts in RL, such as the policy gradient objective
[26] or the TD-target [40], which can generalise to solve a distribution of different tasks.

In general, gradient-based Meta-RL (GMRL) tasks can be formulated by a two-level optimisation
procedure. This procedure optimises the parameters of an outer-loop meta-learner, whose objective
is dependent on a 𝐾-step policy update process (e.g., stochastic gradient descent) conducted by an
inner-loop learner. Formally, this procedure can be written as:

max
𝝓
𝐽𝐾 (𝝓) := 𝐽Out (𝝓, 𝜽𝐾 ),

s.t. 𝜽 𝑖+1 = 𝜽 𝑖 + 𝛼∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖), 𝑖 ∈ {0, 1 . . . 𝐾 − 1},

(1)

where 𝜽 are inner-loop policy parameters, 𝝓 are meta parameters, 𝛼 is the learning rate, 𝐽In and
𝐽Out are value functions for the inner and the outer-loop learner. In solving Eq. (1), estimating the
meta-gradient of ∇𝝓𝐽

𝐾 (𝝓) from a two-level optimisation process is non-trivial; how to conduct
accurate estimation on ∇𝝓𝐽

𝐾 (𝝓) has been a critical yet challenging research problem [23, 29, 33].

In this paper, we point out that the meta-gradient estimators adopted by many recent GMRL methods
[26, 40] are in fact biased. We conclude that such bias comes from two sources: (1) the compositional
bias and (2) the multi-step Hessian bias. The compositional bias origins from the discrepancy
between the sampled policy gradient ∇𝜽𝐽

In and expected policy gradient ∇𝜽𝐽
In, and the multi-

step Hessian estimation bias occurs due to the biased Hessian estimation ∇2
𝜽𝐽

In resulting from the
employment of automatic differentiation in modern GMRL implementations.

There are very few prior work that investigates the bias in GMRL, most of them limited to the Hessian
estimation bias in the MAML-RL setting [29, 33]. Our paper investigates the above two biases in a
broader setting and applies on generic meta-gradient estimators. For the compositional bias term,
we offer the first theoretical analysis on its quantity, based on which we then investigate current
mitigation solutions. For the multi-step Hessian bias, we provide rigorous analysis in GMRL settings
particularly for those GMRL tasks where complex inner-loop optimisations are involved.

For the rest of the paper, we first introduce a unified Meta-RL framework that can describe variations
of existing GMRL algorithms. Building on this framework, we offer two theoretical results that 1) the
compositional bias has an upper bound of O

(
𝐾𝛼𝐾 �̂�In |𝜏 |−0.5) with respect to the inner-loop update

step 𝐾, the learning rate 𝛼, the estimate variance �̂�2
In and the sample size |𝜏 |, and 2) the multi-step

Hessian bias Δ̂𝐻 has a polynomial impact of O
(
(𝐾−1) (Δ̂𝐻 )𝐾−1) . To validate our theoretical insights

on these two biases, we conduct a comprehensive list ablation studies. Experiments over tabular MDP
with MAML-RL [10] and LIRPG [42] demonstrate how quantitatively these two biases influence the
estimation accuracy, which consolidates our theories.

Furthermore, our theoretical results help understand to what extent existing methods can mitigate
theses two bias empirically. For the compositional bias, we show that off-policy learning methods can
reduce the inner-loop policy gradient variance and the resulting compositional bias. For the multi-step
Hessian bias, we study how the low-variance curvature technique based on Rothfuss et al. [29] can
help correct the Hessian bias for general GMRL problems. We test these solutions on environments
including iterated Prisoner’s Dilemma with off-policy corrected LOLA-DiCE [13], and eight Atari
games based on MGRL [39] with the multi-step Hessian correction technique. Experimental results
confirm that those bias-correction methods can substantially decrease the meta-gradients bias and
improve the overall performance on rewards.

2 Related Work

A pioneering work that studies meta-gradient estimation is Al-Shedivat et al. [1] who discussed the
biased estimation problem of MAML and proposed the E-MAML sample based formulation to fix
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the meta-gradient bias. Following work includes Rothfuss et al. [29], Liu et al. [23], Tang et al.
[33] that tried to fix the meta-gradient estimation error by reducing the estimation variance so as to
improve the performance. Moreover, Foerster et al. [12], Farquhar et al. [8], Mao et al. [24] discussed
the higher-order gradient estimation in RL. Recently, Bonnet et al. [4], Vuorio et al. [36] proposed
algorithms to balance the bias-variance trade-off for meta-gradient estimates. Within theoretical
context of GMRL, most theoretical analysis focuses on convergence to stationary points. Fallah et al.
[6] established convergence guarantees of gradient-based meta-learning algorithms for supervised
learning with one-step inner-loop update. Ji et al. [18] extended the analysis to multi-step inner
loop updates. Fallah et al. [7] established convergence for the E-MAML formulation. Our work
is different from all the above prior work from three folds: (1) we study the additional bias term
(the compositional bias) (2) we consider different formulation (expected update while sample-based
update in [36], refer to Appendix B for more discussions) (3) we study a broader scope of applications
that include different GMRL algorithm instantiations and settings.

In the following part, we review existing GMRL algorithms and categorise them into four research
topics. We offer one typical example for each topic in Table 1 and further discussed their relationship
and how they can be unified into one framework in Sec. 3. We also provide a more self-contained
explanation for each topic in Appendix A for readers that are not familiar with GMRL.

Few-shot RL. The idea of few-shot RL is to enable RL agent with fast learning ability. Specifically,
the RL agent is only allowed to interact with the environment for a few trajectory to conduct task-
specific adaptation. Conducting few-shot RL has two approaches: gradient based and context based.
Context based Meta-RL involves works [5, 15, 27, 37], which uses neural network to embed the
information from few-shot interactions so as to obtain task-relevant context. Gradient based few-shot
RL [1, 23, 29] focus on meta-learning the model’s initial parameters through meta-gradient descent.

Opponent Shaping. Foerster et al. [13], Letcher et al. [22], Kim et al. [19] explicitly models the
learning process of opponents in multi-agent learning problems, which can be thought of as GMRL
problems since meta-gradient estimation in these works involve differentiation over opponent’s policy
updates. By modelling opponents’ learning process, the multi-agent learning process can reach better
social welfare [13, 22] or the ego agent can adapt to a new peer agent [19].

Single-lifetime Meta-gradient RL. This line of research focuses on learning online adaptation
over algorithmic hyper-parameters to enhance the performance of an RL agent in one single task,
such as discount factor [39, 41], intrinsic reward generator [42], auxiliary loss [34], reward shaping
mechanism [17], and value correction [44]. The main feature of online meta-gradient RL is that they
are under single-lifetime setting [40], meaning that the algorithm only iterates through the whole RL
learning procedure in one task rather a distribution of tasks.

Multi-lifetime Meta-gradient RL. Compared to the previous single-lifetime settings, “multi-
lifetime" refers to settings where agents learn to adapt on a distribution of tasks or environments.The
meta-learning target includes policy gradient or TD learning objectives [3, 20, 26], intrinsic reward
[43], target value function [40], options in hierarchical RL [35], and recently the design of curriculum
in multi-agent learning [9].

3 A Unified Framework for Meta-gradient Estimation

In this section, we derive a general formulation for meta-gradient estimation in GMRL. This formula-
tion enables us to conduct general analysis about meta-gradient estimation and we will show how
algorithms in the four research topics mentioned in Sec. 2 can be described through it.

We propose that a general GMRL objective with 𝐾-step inner-loop policy gradient update can be
written as the following objective

max
𝝓
𝐽𝐾 (𝝓) := 𝐽Out (𝝓, 𝜽𝐾 ), 𝜽𝐾 = 𝜽0 + 𝛼

𝐾−1∑︁
𝑖=0

∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖). (2)

We denote the meta-parameters as 𝝓, and the pre- and post-adapt inner parameters as 𝜽 and 𝜽𝐾 ,
respectively. The meta objective as 𝐽Out, the inner loop objective as 𝐽In. The general objective for
GMRL is to maximise the meta objective 𝐽Out (𝝓, 𝜽𝐾 ), where the inner-loop post-adapt parameters
are obtained by taking 𝐾 policy gradient steps. Note that all inner-loop updates refer to an expected
policy gradient (EPG) and all bias term we discuss hereafter is the bias w.r.t the exact meta-gradient
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Table 1: Four typical gradient-based Meta-RL (GMRL) algorithms.
Category Algorithms Meta parameter 𝜙 Inner parameter 𝜃

Few-shot RL MAML [10] Initial Parameter Initial Parameter
Opponent Shaping LOLA [13] Ego-agent Policy Other-agent Policy

Single-lifetime MGRL MGRL [39] Discount Factor RL Agent Policy
Multi-lifetime MGRL LPG [26] LSTM Network RL Agent Policy

in this 𝐾-step EPG inner-loop setting. We discuss the truncated 𝐾-step EPG setting in Appendix B.
The form of exact meta-gradient ∇𝝓𝐽

𝐾 (𝝓) is given by the following proposition via the chain rule.

Proposition 3.1 (𝐾-step Meta-Gradient). The exact meta-gradient to the objective in Eq. (2) can be
written as:

∇𝝓𝐽
𝐾 (𝝓) = ∇𝝓𝐽

Out (𝝓, 𝜽𝐾 ) + 𝛼∇𝝓𝜽
𝐾∇𝜽𝐾 𝐽

Out (𝝓, 𝜽𝐾 ),

∇𝝓𝜽
𝐾 =

𝐾−1∑︁
𝑖=0

∇𝝓∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖)

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (𝝓, 𝜽 𝑗 )

)
.

(3)

The derivation of the above proposition is in Appendix E.1.

For each topic mentioned in Sec. 2, we pick one GMRL algorithm example to illustrate how they can
be fit into this framework. To describe meta-gradient estimation in RL, we start with basic notations.
Consider a discrete-time finite horizon Markov Decision Process (MDP) defined by 〈S,A, 𝑝, 𝑟, 𝛾, 𝐻〉.
At each time step 𝑡, the RL agent observes a state 𝒔𝑡 ∈ S, takes an action 𝒂𝑡 ∈ A based on the policy
𝜋𝜽 (𝒂𝑡 |𝒔𝑡 ) parametrised with 𝜽 ∈ ℝ𝑑 , transits to the next state 𝒔𝑡+1 ∈ S according to the transition func-
tion 𝑝(𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 ) and receives the reward 𝑟 (𝒔𝑡 , 𝒂𝑡 ) . We define the return R(𝝉) = ∑𝐻

𝑡=0 𝛾
𝑡𝑟 (𝒔𝑡 , 𝒂𝑡 )

as the discounted sum of rewards along a trajectory 𝝉 := (𝒔0, 𝒂0, . . . , 𝒔𝐻−1, 𝒂𝐻−1, 𝒔𝐻 ) sampled
by agent policy. The objective for the RL agent is to maximise the expected discounted sum of
rewards 𝑉 (𝜽) = 𝔼𝝉∼𝑝 (𝝉;𝜽) [R(𝝉)]. Then the RL agent updates parameter 𝜽 using policy gradient
given by ∇𝜽𝑉 (𝜽) = 𝔼𝝉∼𝑝 (𝝉;𝜽) [∇𝜽 log 𝜋𝜽 (𝝉)R(𝝉)] where ∇𝜽 log 𝜋𝜽 (𝝉) =

∑𝐻
𝑡=0 ∇𝜽 log 𝜋𝜽 (𝒂𝑡 |𝒔𝑡 ). For

two-agent RL problems, we can extend the MDP to two-agent MDP (or, Stochastic games [31])
defined by 〈S1,S2,A1,A2, 𝑃, 𝑟1, 𝑟2, 𝛾, 𝐻〉, the learning objective for agent 𝑖 is to maximise its value
function of 𝑉𝑖 (𝜽) = 𝔼𝝉𝑖∼𝑝 (𝝉𝑖 ;𝜽𝑖) [R𝑖 (𝝉𝑖)].
MAML. Finn et al. [10] optimized over meta initial parameters to maximize the return of one-step
adapted policy: 𝜽1 = 𝜽 + 𝛼∇𝜽𝑉 (𝜽). In MAML-RL, 𝐽Out (𝝓, 𝜽1) degenerates to 𝑉 (𝜽1) and 𝝓 and
𝜽 represent the same initial parameters. The meta-gradient can be derived in the form of Eq. (3):
∇𝜽𝜽

1∇𝜽1𝑉 (𝜽1), where ∇𝜽𝜽
1 = 𝐼 + 𝛼∇2

𝜽𝑉 (𝜽).
LOLA. Foerster et al. [13] proposed a new learning objective by including an additional term that
accounts for the impact of the ego policy to the anticipated opponent’s gradient update. For LOLA-
agent with parameters 𝝓, it will optimise its return over one-step-lookahead opponent parameters 𝜽1.
The meta-gradient can be shown as: ∇𝝓𝑉1 (𝝓, 𝜽1)+∇𝝓𝜽

1∇𝜽1𝑉1 (𝝓, 𝜽1), where ∇𝝓𝜽
1 = 𝛼∇𝝓∇𝜽𝑉2 (𝝓, 𝜽)

MGRL. Xu et al. [39] proposed to tune the discount factor 𝛾 and bootstrapping parameter 𝜆 in
an online manner. The main feature of MGRL is to conduct inner-loop RL policy 𝜽 update and
outer-loop meta parameters 𝝓 = (𝛾, 𝜆) alternately. In MGRL, 𝐽Out (𝝓, 𝜽1) degenerates to 𝑉 (𝜽1). The
meta-gradient takes the form: ∇𝝓𝜽

1∇𝜽1𝑉 (𝜽1),∇𝝓𝜽
1 = 𝛼∇𝝓∇𝜽𝑉 (𝝓, 𝜽).

LPG. Oh et al. [26] aimed to learn a neural network based RL algorithm, by which a RL agent
can be properly trained. In LPG, 𝜽 represents the RL agent policy parameters and 𝝓 is the meta-
parameter of neural LSTM RL algorithm, 𝐽In (𝝓, 𝜽) denotes 𝑓 (𝝓, 𝜽), which is the output of meta-
network 𝝓 for conducting inner-loop neural policy gradients. The meta-gradient can be shown as:
∇𝝓𝜽

1∇𝜽1𝑉 (𝜽1),∇𝝓𝜽
1 = 𝛼∇𝝓∇𝜽 𝑓 (𝝓, 𝜽).

Remark. The analytical form of exact meta-gradient given in Eq. (3) involves computation of
first-order gradient ∇𝜽𝐽

In , ∇𝝓𝐽
Out and∇𝜽𝐽

Out , Jacobian ∇𝝓∇𝜽𝐽
In and Hessian ∇2

𝜽𝐽
In. In practice,

these four quantities can be estimated by random samples from inner-loop update step 0 to 𝐾 − 1,
which denoted by 𝝉0:𝐾−1

0 , 𝝉0:𝐾−1
1 , 𝝉0:𝐾−1

2 , 𝝉3. As a result, the estimated gradient ∇𝝓𝐽
𝐾 (𝝓) can be
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derived as:
∇𝝓𝐽

𝐾 (𝝓) = ∇𝝓𝐽
Out (𝝓, �̂�𝐾 , 𝝉3) + 𝛼∇𝝓 �̂�

𝐾∇
�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝝉3),

∇𝝓 �̂�
𝐾
=

𝐾−1∑︁
𝑖=0

∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)

𝐾−1∏
𝑗=𝑡+1

(
𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)
)
.

(4)

The post-adapt inner parameter estimate takes the form �̂�
𝐾
= 𝜽0 + 𝛼∑𝐾−1

𝑖=0 ∇
�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖0).

4 Theoretical Analysis of Meta-gradient Estimators

In this section, we systematically discuss and theoretically analyse the bias and variance terms for
meta-gradient estimations in the current GMRL literature. We highlight two important sources of
biases in meta-gradient estimations: the compositional bias and the multi-step Hessian bias. Our
analysis builds on the following three assumptions:
Assumption 4.1 (Lipschitz continuity). The outer-loop objective function 𝐽Out satisfies that
𝐽Out (·, 𝜽) and 𝐽Out (𝝓, ·) are Lipschitz continuous with constants 𝑚𝜽 and 𝑚𝝓 respectively, 𝑚1 =

max𝜽 𝑚𝜽 , 𝑚2 = max𝝓 𝑚𝝓. ∇𝝓𝐽
Out (·, 𝜽) and ∇𝜽𝐽

Out (𝝓, ·) are Lipschitz continuous with constants
𝜇𝜽 and 𝜇𝝓 respectively, 𝜇1 = max𝜽 𝜇𝜽 , 𝜇2 = max𝝓 𝜇𝝓. The inner-loop objective function 𝐽In

satisties that ∇𝜽𝐽
In (·, 𝜽)and ∇𝜽𝐽

In (𝝓, ·) are Lipschitz continuous with constants 𝑐𝜽 and 𝑐𝝓 respectively,
𝑐1 = max𝜽 𝑐𝜽 , 𝑐2 = max𝝓 𝑐𝝓 . ∇2

𝜽𝐽
In (𝝓, ·) is Lipschitz continuous with constants 𝜌𝝓 , 𝜌2 = max𝝓 𝑚𝝓 .

Assumption 4.2 (Bias of estimators). Outer-loop stochastic gradient estimator ∇𝝓𝐽
Out (𝝓, 𝜽 , 𝝉) and

∇𝜽𝐽
Out (𝝓, 𝜽 , 𝝉) are unbiased estimator of ∇𝝓𝐽

Out (𝝓, 𝜽) and ∇𝜽𝐽
Out (𝝓, 𝜽). Inner-loop stochastic

gradient estimator ∇𝜽𝐽
In (𝝓, 𝜽 , 𝝉) is unbiased estimator of ∇𝜽𝐽

In (𝝓, 𝜽).
Assumption 4.3 (Variance of estimators). The outer-loop stochastic gradient estimator
∇𝝓𝐽

Out (𝝓, 𝜽 , 𝝉) and ∇𝜽𝐽
Out (𝝓, 𝜽 , 𝝉) has bounded variance, i.e., 𝔼𝜏 [‖∇𝝓𝐽

Out (𝝓, ·, 𝝉) −
∇𝝓𝐽

Out (𝝓, ·)‖2] ≤ (𝜎1)2, and 𝔼𝜏 [‖∇𝜽𝐽
Out (𝝓, ·, 𝝉) − ∇𝜽𝐽

Out (𝝓, ·)‖2] ≤ (𝜎2)2.

The above three assumptions are all common ones adopted by existing work [6, 7, 18]. We futher
discussed the limitation of assumptions, which are presented in Appendix D.
4.1 The Compositional Bias

Recall the 𝐾-step inner-loop meta-gradient estimate in Eq. (4), existing GMRL methods usually get
unbiased outer-loop gradient estimator ∇𝝓𝐽

Out (𝝓, �̂�𝐾 , 𝝉3) and ∇
�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝝉3), then the algorithm

can get unbiased meta-gradient estimation by plugging in unbiased inner-loop gradient estimation �̂�
𝐾 ,

where 𝔼[�̂�𝐾 ] = 𝜽𝐾 . However, this is not true because of the compositional optimisation structure.

Consider a non-linear compositional scalar objective 𝑓 (𝜽𝐾 ), the gradient estimation bias comes from
the fact that

𝑓 (𝜽𝐾 ) = 𝑓 (𝔼[�̂�𝐾 ]) ≠ 𝔼[ 𝑓 (�̂�𝐾 )] .
If one substitutes the non-linear function 𝑓 (𝜽𝐾 ) with ∇𝜽𝐾 𝐽

Out (𝝓, 𝜽𝐾 ) and ∇𝝓𝐽
Out (𝝓, 𝜽𝐾 ), then a

typical meta-gradient estimation in GMRL introduces compositional bias:

𝔼[∇
�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3)] = 𝔼[∇

�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 )] ≠ ∇𝜽𝐾 𝐽

Out (𝝓, 𝜽𝐾 ),

𝔼[∇𝝓𝐽
Out (𝝓, �̂�𝐾 , 𝜏3)] = 𝔼[∇𝝓𝐽

Out (𝝓, �̂�𝐾 )] ≠ ∇𝝓𝐽
Out (𝝓, 𝜽𝐾 ),

(5)

which leads to meta-gradient estimation bias. The following lemma characterises compositional bias.

Lemma 4.4 (Compositional Bias). Suppose that Assumption 4.1 and 4.2 hold, let Δ̂𝐶 = 𝔼[‖ 𝑓 (�̂�𝐾 ) −
𝑓 (𝜽𝐾 )‖] be the compositional bias and 𝐶0 the Lipschitz constant of 𝑓 (·), |𝝉 | denote number of
trajectories used to estimate inner-loop gradient in each inner-loop update step, 𝛼 the learning rate,
then we have,

Δ̂𝐶 ≤ 𝐶0𝔼[‖�̂�𝐾 − 𝜽𝐾 ‖] ≤ 𝐶0

(
(1 + 𝛼𝑐2)𝐾 − 1

) �̂�In

𝑐2
√︁
|𝝉 |
, (6)

where �̂�In = max𝑖
√︃
𝕍[∇𝜽𝑖 𝐽

In (𝝓, 𝜽 𝑖 , 𝝉𝑖0)], 𝑖 ∈ {0, .., 𝐾 − 1}.
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Proof. See Appendix F.1 for a detailed proof. �

Lemma 4.4 indicates that the compositional bias comes from the inner-loop policy gradient estimate,
concerning the learning rate 𝛼, the sample size |𝝉 | and the variance of policy gradient estimator �̂�In.
This is a fundamental issue in many existing GMRL algorithms [13, 39] since applying stochastic
policy gradient update can introduce estimation errors, possibly due to large sampling variance,
therefore �̂�

𝐾
≠ 𝜽𝐾 . It also implies that the bias issue becomes more serious under the multi-step

formulation since each policy gradient step introduces estimation error, resulting in composite biases.

4.2 The Multi-step Hessian Bias

Recall the analytical form of the exact meta-gradient in Eq. (3), estimating ∇𝝓𝜽
𝐾 involves computing

Hessian ∇2
𝜽 𝑗
𝐽In (𝝓, 𝜽 𝑗 ). In Eq. (4), the Hessian term is estimated by ∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝜏 𝑗2 ) where 𝑗 ∈
{1, . . . , 𝐾 − 1}. Hessian estimation is a non-trivial problem in GMRL, biased Hessian estimation
issue has been brought up in various MAML-RL papers[23, 29, 33], we offer a brief summary in
Appendix C due to page limit. Beyond MAML-RL, many recent GMRL work suffers from the same
bias due to applying direct automatic differentiation. For example, existing work such as Eq. (3) in
Oh et al. [26], Eq. (4) in Zheng et al. [43], Eq. (12), (13), (14) in Xu et al. [39] and Eq. (5), (6), (7) in
Xu et al. [40] suffers from this issue. Interestingly, most of them are coincidentally unbiased if they
only conduct only one-step policy gradient update in the inner-loop. For 𝐾-step GMRL when 𝐾 = 1,
∇𝝓𝜽

1 in meta-gradient writes as:

∇𝝓𝜽
1 = ∇𝝓∇𝜽1𝐽In (𝝓, 𝜽1). (7)

We can see from Eq. (7) that it would not involve Hessian ∇2𝐽In computation if 𝝓 ≠ 𝜽. To further
illustrate, in one-step MGRL, we can show that the estimation of ∇𝝓𝜽

1 are unbiased because it takes
derivatives w.r.t meta-parameters 𝝓 = (𝛾, 𝜆) which don’t have gradient dependency on the trajectory
distribution. However, when it takes more than one-step inner-loop policy gradient updates, the
meta-gradient estimation will get the hessian estimation bias. As a result, for the reason that when
𝐾 > 1 in 𝐾-step GMRL, the ∇𝝓𝜽

𝐾 in meta-gradient takes the form:

∇𝝓𝜽
𝐾 =

𝐾−1∑︁
𝑖=0

∇𝝓∇𝜽𝑖 𝐽
In (

𝝓, 𝜽 𝑖
) 𝐾−1∏
𝑗=𝑡+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (

𝝓, 𝜽 𝑗
) )
. (8)

This is the reason why we name it by multi-step Hessian bias.

4.3 Theoretical Bias-Variance Analysis

Based on Lemma 4.4 and the discussion in Sec. 4.2, we can derive the upper bound on the bias and
variance of the meta-gradient with 𝐾-step inner-loop updates.
Theorem 4.5 (Upper bound for the bias and the variance). Suppose that Assumption 4.1 and 4.2
and 4.3 hold. Let 𝐽𝝓,𝜽 denote ∇𝝓∇𝜽𝐽

In, 𝐻𝜽,𝜽 denote ∇2
𝜽𝐽

In, Δ̂𝐾 = ‖𝔼[∇𝝓𝐽
𝐾 (𝝓)] − ∇𝝓𝐽

𝐾 (𝝓)‖ be the
meta-gradient estimation bias, set 𝐵 = 1 + 𝛼𝑐2. Then the bound of bias hold:

Δ̂𝐾 ≤ O
(
(𝐵 + Δ̂𝐻 )𝐾−1

(
𝔼[‖�̂�𝐾 − 𝜽𝐾 ‖] + Δ̂𝐽 + (𝐾 − 1)

) )
. (9)

Let (�̂�𝐾 )2 = 𝕍
[
∇𝝓𝐽

𝐾 (𝝓)
]

be the meta-gradient estimation variance, set 𝑉1 = (1 + 𝛼𝑐2)2, 𝑉2 =

2𝛼2 (𝑚2
1 + 3𝜎2

2 ) the estimation variance is given by

(�̂�𝐾 )2 ≤ O
(
(𝑉1 + Δ̂2

𝐻 )𝐾−1
(
𝔼[‖�̂�𝐾 − 𝜽𝐾 ‖2] + (𝐾 − 1)

)
+

(
𝑉2 + (𝑉1 + Δ̂2

𝐻 + �̂�2
𝐻 )𝐾−1 − (𝑉1 + Δ̂2

𝐻 )𝐾−1
)
(Δ̂2
𝐽 + �̂�2

𝐽 )
)
.

(10)

where Δ̂𝐽 = max𝝓×𝜽 ‖𝔼[𝐽𝝓,𝜽] − 𝐽𝝓,𝜽 ‖. Δ̂𝐻 = max𝜽 ‖𝔼[�̂�𝜽,𝜽] − 𝐻𝜽,𝜽 ‖. (�̂�𝐽 )2 =
max𝝓×𝜽 𝕍[𝐽𝝓,𝜽 ]

|𝜏 | .

(�̂�𝐻 )2 =
max𝜽 𝕍[�̂�𝜽,𝜽 ]

|𝜏 | .
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Proof. See Appendix G.1 for a detailed proof. �

Theorem 4.5 shows that the upper bound of bias and variance consists of two parts: the first term
indicates compositional bias 𝔼[‖�̂�𝐾 − 𝜽𝐾 ‖] in Lemma 4.4, while the second term refers to the
second-order estimation bias (Δ̂𝐽 , Δ̂𝐻 ) and the variance (�̂�𝐽 , �̂�𝐻 ). Several observations can be made
based on Theorem 4.5: 1) the compositional bias exists in both upper bound of bias and variance;
2) the multi-step Hessian bias has polynomial impact on the upper bound of bias and variance; 3)
most importantly, many existing GMRL algorithms suffer from the compositional bias; moreover, the
Hessian bias can significantly increase meta-gradient bias in the multi-step inner-loop setting.

4.4 Understanding Existing Mitigations for Meta-gradient Biases

Based on the above theoretical analysis, we now try to explore and understand how existing methods
can handle these two estimation biases.

Off-policy Learning. From the Lemma 4.4 and the discussion in Sec. 4.1, we know that the
compositional bias is caused by the estimation error between 𝜃𝐾𝑡 and 𝜃𝐾𝑡 . In this case, a simple idea is
that one can leverage off-policy learning technique [32] to handle the compositional bias problem by
reusing samples 𝜏𝑖0:𝑡−1,0 together with 𝜏𝑖

𝑡 ,0 to approximate 𝜃𝐾𝑡 , we want 𝜃𝐾𝑡 to stay close to 𝜃𝐾𝑡 . The
intuition behind this correction is to enlarge the sample size |𝝉 | so that the compositional bias can be
minimised according to Lemma 4.4. Specifically, we can apply importance sampling technique to
correct the compositional bias, i.e., 𝔼𝝉∼𝑝 (𝝉;𝜽)

[∑𝐻−1
𝑡=0

𝜋𝜃 (𝒂𝑡 |𝒔𝑡 )
𝜇 (𝒂𝑡 |𝒔𝑡 ) R𝝓 (𝝉)

]
. In practice, we also need to

manually control the level of off-policyness to prevent the variance introduced by the importance
sampling process from increasing the estimation variance conversely.

Multi-step Hessian Estimator. From the theoretical analysis in Sec. 4.3, we can know that the
Hessian estimation bias can significantly increase the meta-gradient estimation bias in the multi-step
inner-loop setting. Many low-bias hessian estimator have been proposed in the scope of MAML-RL.
However, the effect of them have never been verified in the general GMRL context. Here we have
a second look at the Low Variance Curvature (LVC) method [29], one can replace the original
log-likelihood with the LVC operator in the policy gradient step. As such, the Hessian estimator
∇2
𝜃
𝐽In

LVC (𝝓, 𝜽) = takes the form: ∇𝜃𝔼𝝉∼𝑝 (𝝉;𝜽)
[∑𝐻−1

𝑡=0
∇𝜽 𝜋𝜽 (𝒂𝑡 |𝒔𝑡 )
⊥𝜋𝜽 (𝒂𝑡 |𝒔𝑡 ) R𝝓 (𝝉)

]
where ⊥ is the stop-gradient

operation which detaches the gradient dependency from the computation graph. As shown in [29],
the LVC operator will ensure an unbiased first-order policy gradient and low-biased low-variance
second-order policy gradient. Essentially, this operator only corrects the meta-gradient update and
leaves the inner-loop gradient estimation formula untouched.

5 Experiments
In this section we conduct empirical evaluation of our proposed bias analysis and the proposed
methods to mitigate the biases, and our experiments cover all 3 GMRL fields listed in Table 1. In
particular, we conduct a tabular MDP experiment to show the existence of two biases discussed in
Sec. 4 using MAML [10] and LIRPG [42]. In order to show how the proposed methods can mitigate
the compositional bias, we consider a Iterated Prisoner Dilemma (IPD) problem and use LOLA
[13] with off-policy corrections in Sec. 4.4; Similarly, we conduct evaluations on Atari games using
MGRL [39] with LVC corrections in Sec. 4.4 to mitigate the Hessian estimation bias. We open source
our code at https://github.com/Benjamin-eecs/Theoretical-GMRL.

5.1 Investigate the correlation and bias of meta-gradient estimators

Firstly, we conduct experiments to study different meta-gradient estimators using a tabular example
using MAML and LIRPG. To align with existing works in the literature, we adopt the settings of
random MDPs in [33] with the focus on meta-gradient estimation. We refer readers to Appendix I.1.1
for more experimental details.

MAML-RL. Recall that the meta-gradient in MAML is ∇𝜽0𝐽Out (𝜽𝐾 ). To control the effect of gradient
estimations, we use the three estimators to estimate following three terms: (I) inner-loop policy
gradient ∇𝜽𝐽

In (𝜽); (II) Jacobian/Hessian ∇2
𝜽𝐽

In (𝜽); (III) outer-loop policy gradient ∇𝜽𝐾 𝐽
Out (𝜽𝐾 ).

Refer to Appendix I.1.2 for the implementation of decomposing meta-gradient estimation with
different estimators.
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Figure 1: (a, b) Ablation study on sample size and estimators in MAML-RL. “S" is for stochastic
estimation while “E" is for exact solution. AD refers to automatic differentiation. (c,d) Ablation
study on sample size, steps and estimators in LIRPG.

To show how the estimation is biased, we use a stochastic estimator denoted as S, and exact analytic
calculator denoted as E, for all three derivative terms. Thus, we can have 7 valid permutations in the
experiment to validate the estimation, where the rest EEE estimator is the exact gradient.

Firstly, we conduct our ablation studies by comparing the correlation between of meta-
gradient with the exact one. The correlation metric, which is determined by bias and variance,
can show how the final estimation quality is influenced by these two bias terms. As the quality
of stochastic estimators vary from many factors, we conduct this ablation study under extensive
combinations of estimation algorithms (including DiCE [12], Loaded-DiCE [8], LVC [29], and pure
automatic differentiation in original MAML [10]), learning rates, sample sizes, .etc. Due to the
page limit, the results illustrated in Fig. 1(a,b) only include ablation study on sample size using
LVC/automatic differentiation and estimation using exact gradients for (III), the outer-loop policy
gradient. For the rest ablation study and more evaluation metrics (variance of estimation), refer to
Appendix I.1.3.

We start our evaluation by increasing the sample size. For simplicity, we only conduct one inner
step here. In Fig. 1(a), we leverage the LVC [29] estimator. We can see that a correct inner-loop
policy estimation and/or a Hessian estimation can significantly improve the estimation quality (as
SEE ≈ ESE > SSE in low sample size case). By increasing the sample size, we can see the gap
between them is shrinking, which verifies the finding in Lemma 4.4. In this case the compositional
bias correction shares the same importance with the Hessian bais correction (SEE ≈ ESE). We
also compare it with the original yet biased gradient estimator of MAML in Fig. 1(b), in which
SEE > ESE in all sample size settings. In fact, since the gradient estimation is biased, only SEE
achieves near 1.0 correlation provided sufficient samples, again confirms the importance of Hessian
bias corrections in Sec. 4.2.
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Figure 2: (a, b, c) Ablation study of meta-gradient bias due to the compositional bias in different
estimators, step sizes, learning rates. Loaded-DiCE, LVC and AD achieve exactly the same composi-
tional bias because they have the same first-order gradient, (d) Ablation study of meta-gradient bias
due to the Hessian bias in different learning rates and Hessian bias coefficients.

Beside the correlation result above, we also add additional experimental results in Fig. 2 over
the pure meta-gradient bias term introduced by compositional bias and Hessian bias. It can
also be regarded as an empirical verification of our Lemma 4.4 and Theorem 4.5. In Fig. 2 (a, b,
c), we mainly study How (a) the inner-loop step size, (b) learning rate and (c) sample size influence
final meta-gradient bias. It successfully validates our Lemma 4.4 (O

(
𝐾𝛼𝐾 �̂�In |𝜏 |−0.5)) about the

exponential impact from the inner-loop step 𝐾 (approximately linear relationship between log-scale
bias and step size in (a)), the polynomial impact from the learning rate 𝛼 (approximately Concave
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(b) Ablation: Compositional Bias
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Figure 3: Experiment result of LOLA-DiCE over 10 seeds. The Inner_𝐴_Outer_𝐵 legend means we
use 𝐴 samples to estimate inner-loop gradient while 𝐵 samples to estimate outer-loop gradient. The
’exact’ means we use analytical solution of policy gradient instead of estimation.

downward relationship between log-scale bias and learning rate in (b)) and the polynomial impact
from the sample size 𝛼 (approximately negative linear relationship between log-scale bias and log-
scale sample size in (c)). In the second MAML-Hessian experiment, we conduct experiments to verify
the polynomial impact O

(
(𝐾 − 1) (Δ̂𝐻 )𝐾−1) on the meta-gradient bias introduced by the multi-step

Hessian estimation bias Δ̂𝐻 (The Concave downward relationship in (d)). In our implementation, we
manually add the Hessian bias error into the estimation and control the quantity of it by multiplying
different coefficients.

LIRPG. In this setting, we follow the algorithm of intrinsic reward generator presented in [42].
In tabular MDP, we have an additional meta intrinsic reward matrix 𝜙. Starting from 𝜽0, the
inner-loop process takes policy gradient based on the new reward matrix 𝑅new = 𝑅 + 𝝓: 𝜽 𝑖+1 =

𝜽 𝑖 + 𝛼∇𝜽𝑖 𝐽
In (𝜽 𝑖 , 𝜙), 𝑖 ∈ {0, 1...𝐾 − 1}. The meta-gradient estimation of the intrinsic reward matrix

∇𝝓𝐽
Out (𝜽𝐾 ) is needed in this case. Note that in the outer loss we use the original reward matrix

𝑅 so the outer loss is 𝐽Out (𝜽𝐾 ) rather than 𝐽Out (𝝓, 𝜽𝐾 ). Compared with MAML-RL, the object of
meta-update (intrinsic matrix) and the object of inner-update (policy parameters) are different, which
help us identify the problem mentioned in Sec. 4.2.

In this case, we choose the LVC and AD estimator. We conduct ablation study on inner-step and
sample size shown in Fig. 1(c,d). With more sample size and less step size, the correlation increases
for both estimator. Two important features are: (1) With 1-step inner-loop setting, both estimator
performs similarly in the correlation. (2) With multi-step inner-loop setting, LVC based estimator can
still reach relatively high correlation while MAML-biased estimator directly reaches low correlation
after 5-step inner-loop. The phenomenon shown here corresponds exactly to the Hessian estimation
issue we discuss in Sec. 4.2 and the bias issue will be more severe with multi-step inner-loop setting.

5.2 Compositional bias/off-policy learning in LOLA

In this subsection, we conduct three experiments on Iterated Prisoner Dilemma (IPD) with the LOLA
algorithm to show: (1) The effect brought by different inner/outer estimators. (2) The effect brought
compisitional bias (Sec. 4.1) (3) How off-policy correction (Sec. 4.4) can help the LOLA algorithm.
Please refer to Appendix I.2.1, I.2.2 for more experimental setting and results.

Ablation on LOLA-DiCE inner/outer estimation. We report the result of conducting ablation
study for different inner/outer-loop estimation of LOLA-DiCE in the Fig. 3(a). Here the inner-loop es-
timation refers to ∇𝜽𝐽

In (𝝓, 𝜽) while outer-loop estimation refers to ∇𝜽1𝐽Out (𝝓, 𝜽1) and ∇𝝓𝐽
Out (𝝓, 𝜽1).

The return shown in Fig. 3(a) reveals us two findings: 1) The inner-loop gradient estimation plays an
important role for making LOLA work—the default batch size 128 fails while the batch size 1024
succeeds. 2) The outer-loop gradient estimation is also crucial to the performance of LOLA-Exact.
Furthermore, we continue conducting ablation studies on the inner-loop gradient update.

Ablation on compositional bias. Since the unbiased DiCE estimator is used in LOLA-DiCE
algorithm, there is no Hessian estimation bias in the LOLA algorithm. Thus, we mainly discuss the
problem of compositional bias brought in Fig. 3(b). We also apply the implementation in Sec. 5.1 to
decompose meta-gradient estimation with different estimators. Fig. 3(b) show us the ablation study
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Figure 4: Experimental results on Atari game over 5 random seeds.

over compositional bias, which reveals that: compositional bias may decrease the performance and
by adding more samples or using analytical solution, the performance can start to improve.

Off-policy DiCE and ablation study. We use the off-policy learning to conduct inner-loop update
and keep the outer-loop gradient same as before. By combing DiCE and off-policy learning, we

have off-policy DiCE 𝐽OFF−DICE: 𝔼𝝉

[∑𝐻−1
𝑡=0

(∏𝑡
𝑡′=0

𝜋𝜙 (𝒂1
𝑡′ |𝒔

1
𝑡′ ) 𝜋𝜃 (𝒂

2
𝑡′ |𝒔

2
𝑡′ )

𝜇1 (𝒂1
𝑡′ |𝒔

1
𝑡′ )𝜇2 (𝒂2

𝑡′ |𝒔
2
𝑡′ )

)
𝑅𝑡

]
, where 𝜙, 𝜃 refer to the

current policy, 𝜇1, 𝜇2 refer the behaviour policy for agent 1 and agent 2, respectively. H is the
trajectory length and 𝑅 refers to the reward for agent. Note that the off-policy DiCE here can not
only lower the compositional bias by lowering the first-order policy gradient error, but also helps
lower the Hessian variance theoretically. By the decomposition trick, we conduct experiments by
traversing over all learning settings for (off-off/off-on/on-off/on-on), which are shown at Fig. 3(d).
Comparisons between different settings verify that off-policy DiCE can increase performance by
either lowering the compositional bias, or the hessian variance, or both.

5.3 Multi-step Hessian correction on MGRL

Finally, we conduct experiment over MGRL [39]. See Appendix I.3.1 and I.3.2 for experimental
settings. When applying the LVC estimator in MGRL, we get the new inner-loop update equation:
𝔼𝝉∼𝑝 (𝝉;𝜽)

[∑𝐻−1
𝑡=0

∇𝜽 𝜋𝜽 (𝒂𝑡 |𝒔𝑡 )
⊥𝜋𝜽 (𝒂𝑡 |𝒔𝑡 )

(
𝑔𝝓 (𝝉) − 𝑣𝜽 (𝒔𝑡 )

) ]
, where 𝝓 = (𝛾, 𝜆) refer to meta-paramters and 𝜃

refers to the RL policy, 𝑔𝝓 (𝜏) denotes 𝜆-return, 𝑣𝜽 (𝑠𝑡 ) denotes value prediction. We conduct
experiment on eight environments of Atari games. We follow previous work [4] to use the "discard"
strategy in which we conduct multiple virtual inner-loop updates for meta gradient estimation. This
strategy is designed to keep the inner learning update unchanged.

In Fig. (4), we show five environments comparing three variants of algorithm: 1) Baseline Advantage
Actor-critic(A2C) algorithm [25]; 2) 3-step MGRL + A2C; 4) 3-step MGRL + A2C + LVC correction.
The "3-step" means we take 3 inner-loop RL virtual updates for calculating meta-gradient. Refer to
Appendix I.3.3 for experimental results on all eight environments. Compared with 3-step MGRL,
the MGRL with LVC correction can substantially improves the performance, which validates the
effectiveness of the multi-step Hessian correction in Sec. 4.4 for handling meta-gradient estimation
bias and bring in better hyperparameter-tuning in RL. Note that the fact that A2C algorithms can
achieve better results compared with 3-step MGRL is consistent with the results in [39].

6 Conclusion

In this paper, we introduce a unified framework for studying generic meta-gradient estimations in
gradient-based Meta-RL. Based on this framework, we offer two theoretical insights that 1) the
compositional bias has an upper bound of O

(
𝐾𝛼𝐾 �̂�In |𝜏 |−0.5) with respect to the inner-loop update

step 𝐾, the learning rate 𝛼, the estimate variance �̂�2
In and the sample size |𝜏 |, and 2) the multi-step

Hessian bias Δ̂𝐻 has a polynomial impact of O
(
(𝐾 − 1) (Δ̂𝐻 )𝐾−1) . To validate our theoretical

discoveries, we conduct a comprehensive list of ablation studies. Empirical results over tabular MDP,
LOLA-DiCE and MGRL validate our theories and the effectiveness of correction methods. We
believe our work can inspire more future work on unbiased meta-gradient estimations in GMRL.
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Supplementary Material

The supplementary material is organized as follows. Appendix A offers more algorithm illustration
for the 4 topics we discuss in Sec. 3. In Appendix B we discuss our choice for EPG formulation and
the truncated setting in GMRL. In Appendix C we briefly summarise biased Hessian estimation issue
in MAML-RL mentioned in Section 4.2, In Appendix D we illustrate how realistic are Assumption
4.1-4.3 of Section 4. Appendices E to G contain the proofs for the results presented in the paper. In
Appendix H we provide statements and proofs for some auxiliary lemmas which are instrumental for
the main results. For convenience of the reader, before each proof we also restate the corresponding
theorem. Finally, in Appendix I we present additional experiments results.

A More topics on GMRL

A.1 Few-shot Reinforcement Learning

One important research field in Meta Reinforcement Learning is few-shot Reinforcement Learning.
The main objective of this research field is to enable Reinforcement Learning agent with fast adapta-
tion ability. Instead of thousands of interactions in traditional Reinforcement Learning algorithms,
agent in few-shot setting is only allowed to interact with the new environment for a few trajectories.
One of the most classical gradient based algorithms in this field is Model Agnostic Meta Learning
(MAML-RL). [10] aims at learning neural network’s initial parameters for fast adaptation on new
environments. It assumes distribution 𝜌(T ) over RL environment T and tries to optimise 𝜽 which
leads to high-performing updated policy 𝜽 ′. The objective equation for one-step MAML-RL can be
shown as follows:

𝐽 (𝜽) = 𝔼T∼𝜌(T)
[
𝔼𝝉′∼𝑃T (𝝉′ |𝜽′) [𝑅 (𝝉′)]

]
with 𝜽 ′ = 𝜽 + 𝛼∇𝜽𝔼𝝉∼𝑃T (𝝉 |𝜽) [𝑅(𝝉)]

(11)

where in practice we use the limited trajectories sampled from the new environment to estimate
∇𝜽𝔼𝝉∼𝑃T (𝝉 |𝜽) [𝑅(𝝉)]. During training, by estimating meta policy gradient ∇𝜽𝐽 (𝜽), MAML can
conduct meta update on the initial policy parameters.

In the scope of Eq. (2), MAML-RL optimizes over meta initial parameters to maximize the return of
one-step adapted policy: 𝜽 ′ = 𝜽 +𝛼∇𝜽𝐽

In (𝜽). In MAML-RL, 𝐽Out (𝝓, 𝜽 ′) degenerates to 𝐽Out (𝜽 ′) and
𝝓 and 𝜽 represent the same initial parameters. The meta-gradient can be derived with the following
equation:

∇𝜽𝐽 (𝜽) = ∇𝜽𝜽
′∇𝜽′𝐽

Out (𝜽 ′) ,∇𝜽𝜽
′ = 𝐼 + 𝛼∇2

𝜽𝐽
In (𝜽) (12)

A.2 Meta-gradient in Opponent Shaping

Opponent shaping [11, 19, 22] is a powerful tool in multi-agent learning process for different purposes.
For instance, Foerster et al. [11] and Letcher et al. [22] have shown that putting other-players learning
dynamic into self-learning process can bring in cooperation behaviors, which may help to reach
better social welfare compared with purely independent learning. Meta-gradient estimation is needed
when ego-agent takes derivatives of other-agent policy gradient step. Learning with Opponent-
Learning Awareness (LOLA) [11] proposed a new learning objective by including an additional
term accounting for the impact of ego policy to the anticipated opponent gradient update. Specifically,
in the two-player setting, with agent 1 policy 𝝓 and agent 2 policy 𝜽, the traditional independent
learning (IL) and 1-step LOLA algorithm can result in different updates for agent 1:

𝝓′
IL = 𝝓 + 𝛽∇𝝓𝐽

Out (𝝓, 𝜽)
𝝓′

LOLA = 𝝓 + 𝛽∇𝝓𝐽
Out (𝝓, 𝜽 ′)

where 𝜽 ′ = 𝜽 + 𝛼∇𝜽𝐽
In (𝝓, 𝜽)

(13)

Where 𝛽 refers to the outer learning rate and 𝐽In/Out refers to the value function for agent 2 and agent 1
respectively. For meta-agent 1 with parameters 𝝓, it will optimise its return over one-step-lookahead
opponent parameters 𝜽 ′. Thus the meta-gradient of meta-agent corresponds exactly to Eq. (2) with
∇𝝓𝜽

′ = 𝛼∇𝝓∇𝜽𝐽
In (𝝓, 𝜽). Note that this one-step-lookahead is a just virtual update considered in the

optimisation of agent 1. Agent 2 can also choose this LOLA update by conducting one-step-lookahead
over agent 1.
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A.3 Single-lifetime Meta-gradient RL

In this setting, the main objective is to self-tune the meta parameters (𝛾 in [39]) or meta models
(intrinsic model in [42]) along with the underlying normal RL updates. It is called online because it
only involves one single RL life-time. This research field is also related with online hyperparameter
optimisation in supervised learning such as [2, 14]. Xu et al. [39] proposed meta-gradient reinforce-
ment learning (MGRL) to tune the discount factor 𝛾 and bootstrapping parameter 𝜆 in an online
manner. It tries to differentiate through one RL inner update to optimize the meta-parameters and
maximise one-step policy return.

max
𝜼
𝑉 𝜋𝜽′ ,where 𝜽 ′ = 𝜽 + 𝛼∇𝜽𝐽 (𝝉, 𝜽 , 𝜼), and

∇𝜽𝐽 (𝝉, 𝜽 , 𝜼) =
(
𝑔𝜼 (𝝉) − 𝑣𝜽 (𝑆)

)
∇𝜽 log 𝜋𝜽 (𝐴 | 𝑆)

+
(
𝑔𝜼 (𝝉) − 𝑣𝜽 (𝑆)

)
∇𝜽𝑣𝜽 (𝑆)

+ ∇𝜽𝐻 (𝜋𝜽 (· | 𝑆))

(14)

where 𝜂 refers to (𝛾, 𝜆), 𝝉 refers to trajectories, 𝑔𝜼 , 𝑣𝜽 , H represent GAE estimation, value function
and entropy respectively. Eq. (14) combines actor loss, critic loss and entropy loss, which are
commonly used in typical Actor-Critic [25] algorithms. Specifically, the meta parameters (𝛾, 𝜆)
corresponds to 𝝓 in Eq. (2) . After the policy parameters 𝜽 take one policy gradient update to become
𝜽 ′(𝜽 ′ = 𝜽 + 𝛼∇𝜽𝐽

In (𝜽 , 𝝓)), we can calculate the meta-gradient by backpropogating from 𝐽Out to meta
parameters. In MGRL, 𝐽Out (𝝓, 𝜽 ′) degenerates to 𝐽Out (𝜽 ′). The meta-gradient can be shown as:

∇𝝓𝐽 (𝝓) = ∇𝝓𝜽
′∇𝜽′𝐽

Out (𝜽 ′) ,∇𝝓𝜽
′ = 𝛼∇𝝓∇𝜽𝐽

In (𝜽 , 𝝓) (15)

Here for simplicity we omit the critic and entropy loss. Usually work in this research field only
conduct one-step inner-loop update before taking meta update. Some recent works such as [34, 4]
have also shown that multi-step online meta-gradient can achieve better performance.

A.4 Multi-lifetime Meta-gradient RL

Existing work like [26, 43, 40, 9] are trying to learn some fundamental/generalizable meta module
across different environments such as a neural RL algorithm in [26](LPG). An important feature
of multi-lifetime Meta-gradient RL is that it inherently needs multi-step inner-loop to account for
the effect of fundamental meta module over the RL process. The objective of LPG is to learn a
neural network based RL algorithm, by which a RL agent can be properly trained. The mathmatical
formulation can be shown as follows:

𝐽 (𝝓) = 𝔼T∼𝜌(T)
[
𝔼𝝉𝐾∼𝑃T (𝝉𝐾 |𝜃𝐾 )

[
𝑅

(
𝝉𝐾

)] ]
,with (16)

𝜃𝑖 = 𝜃𝑖−1 + 𝛼∇𝜃 𝑖−1𝔼𝝉∼𝑃T (𝝉 |𝜃 𝑖−1) [ 𝑓𝝓 (𝝉)] (17)

where 𝑓𝝓 (𝝉) is the output of meta-network 𝝓 for conducting inner-loop neural policy gradient and 𝑘
can be large to show the long-range impact brought by neural RL algorithm. We omit the kl inner loss
used in [26] for simplicity. In the scope of Eq. (1), 𝐽In/Out refers to the value function, 𝜽 represents
the RL agent policy parameters and 𝝓 is the meta-parameter of neural RL algorithm. Most of works
are under a multi-task/environment (or a distribution over environment) and multi-lifetime setting.
[40] is a special case in these work because it is also under the online setting. We believe the main
reason is that the training iterations/sample complexity in [40] is real large (1e9) and makes it become
a special case of ’multi-lifetime’ setting.

B Discussion of expected policy gradient (EPG) formulation and truncated
setting

We discuss 4 research topics in Section 3: few-shot RL(MAML-RL), opponent shaping(LOLA-
DiCE), online meta gradient RL(MGRL) and meta gradient based inverse design(LPG). And we need
to discuss how this multi-step EPG inner-loop formulation differs in these topics. Though they all
need meta policy gradient estimation, the differences between setting and final objective require us to
discuss them separately.

Different setting: MAML-RL and most inverse design algorithms are under multi-lifetime setting
which can renew an environment and restart the RL training from the very beginning. Work in online
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meta gradient RL/LOLA only happen in a single lifetime RL process. There only exists one RL
training process.

Different objectives: For MAML-RL, the main objective is to maximise the return of few-step
adapted policy. Thus the objective corresponds exactly to few-step inner-loop formulation. However,
for topics beyond few-shot RL, in most case they need to measure the influence of meta module over
RL final (after thousands of steps) performance.

There are two important issues in this EPG formulation. The first one is that it assumes an expected
policy gradient inner-loop update. And the second one is because we only consider few-step inner-
loop update so they are under a truncated estimation setting which might bring in bias. Recently, one
work [36] argues that: (1) the general unbiased meta gradient for MAML-RL ([10]) and Online Meta
Gradient ([39],[42]) should be the K-sample inner-loop meta gradient shown in E-MAML [1] rather
than the expected policy gradient inner-loop meta gradient used in many recent work [23, 29, 33]. (2)
The gradient estimator in online meta gradient utilise truncated optimization and the unbiased meta
gradient should be the one in untruncated setting.

Overall we agree that: (1) The K-sample inner-loop meta gradient estimator is unbiased for MAML-
RL problem when sampled policy gradient are used. (2) To learn an schedule (rather than a global
meta module) of meta-parameter/meta-module for MGRL or to learn some fundamental concepts in
inverse-design, the gradient estimator in untruncated setting is unbiased. However, we argue that (1)
For MAML-related problem, the variance of sampling correction term in K-sample inner-loop meta
gradient estimator is large because it needs to sum up all 𝑘 terms and that is why [36] proposes to
use one coefficient to control. The EPG can achieve lower variance estimation and perform better
empirically [29] (2) For meta gradient based inverse design with multi-lifetime, the few-step meta
gradient estimation under truncated setting is biased.

However, in online meta gradient setting (MGRL) or online opponent modelling (LOLA) with single-
lifetime, things are completely different thus a direct transform of K-sample inner-loop formulation
from MAML to MGRL might not be that straightforward. There exists a large gap between the imple-
mentation of online meta gradient algorithm and the final objective (meta-module/hyperparameters
schedule) we may wish. First, it’s an online setting so the multiple lifetime setting where the algorithm
can restart from the very beginning and reiterate the whole process is banned here. This makes the
estimation of unbiased meta gradient impossible because the algorithm cannot access to the future
dynamic for gradient estimation. The experiments with multi-lifetime training in [36] is in fact out
of the scope of online meta gradient setting and are more like meta gradient based inverse design.
Second, in implementation of MGRL they only maintain one running 𝛾 or intrinsic model rather than
multiple meta modules as a real schedule needs. Also, recently there exist one work [4] discussing
multi-step MGRL and use one fixed meta parameters rather than a schedule for multi-step inner-loop,
which may show a different understanding about untruncated gradient. In all, we believe that what
online meta algorithm/opponent shaping like MGRL or LOLA optimizes and what the best they
can achieve in such online setting are still open questions and remain to be further explored. It is
really hard to simply formulate the unbiased meta gradient since the gap between implementation
and objective is still not clear.

Thus, in our paper, we still focuses on the previous work (MAML/MGRL and LOLA) objectives
with EPG inner-loop setting and use its meta gradient as our target gradient. All bias term we discuss
is the bias w.r.t. the expected meta gradient in this EPG inner-loop and truncated setting. That is our
work’s limitation and we leave more things for future work: (1)The gap between EPG inner-loop
meta gradient and K-sample inner-loop meta gradient in MAML-RL related problem. (2) The gap
between truncated EPG inner-loop meta gradient and what the best gradient estimation we can get in
online meta gradient/opponent shaping. (3) The gap between truncated EPG inner-loop meta gradient
and the untruncated gradient in meta gradient based inverse design.

C Brief summary on biased Hessian estimation in MAML-RL

We will briefly introduce the reasons of biased Hessian estimation with automatic differentiation in
one-step MAML-RL. Firstly, we can derive the analytic form of 𝜽1 and ∇𝜽0𝜽1

𝜽1 = 𝜽0 + 𝛼𝔼𝝉∼𝑝 (𝝉;𝜽0) [∇𝜽0 log 𝜋(𝝉)R(𝝉)] (18)
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∇𝜽0𝜽1 = 𝐼 + 𝔼𝝉∼𝑝 (𝝉;𝜽0)

[
R(𝝉)

(
∇2
𝜽0 log 𝜋𝜽0 (𝝉) + ∇𝜽0 log 𝜋𝜽0 (𝝉)∇𝜽0 log 𝜋𝜽0 (𝝉)>

)]
(19)

Typically we need to use trajectory samples 𝝉𝑛 to estimate the policy gradient, we can get the adapted
policy estimate.

�̂�
1
= 𝜽0 + 𝛼 1

𝑁

∑︁
𝝉𝑛

𝐻−1∑︁
𝑡=0

∇𝜽 log 𝜋𝜽 (𝒂𝑛𝑡 | 𝒔𝑛𝑡 )
(
𝐻∑︁
𝑡′=0

𝛾𝑡𝑟
(
𝒔𝑛𝑡′ , 𝒂

𝑛
𝑡′
))

(20)

Finally, implementation of MAML-RL derives the gradient estimate by automatic differentation. The
corresponding estimation is biased:

𝔼[∇𝜽0 �̂�
1] = 𝐼 + 𝛼𝔼𝝉∼𝑝 (𝝉;𝜽0)

[
1
𝑁

∑︁
𝝉𝑛

𝐻−1∑︁
𝑡=0

∇2
𝜽0 log 𝜋𝜽0 (𝒂𝑛𝑡 | 𝒔𝑛𝑡 )

(
𝐻∑︁
𝑡′=0

𝛾𝑡𝑟 (𝒔𝑛𝑡′ , 𝒂𝑛𝑡′)
)]

= 𝐼 + 𝛼𝔼𝝉∼𝑝 (𝝉;𝜽0)
[
R(𝝉)∇2

𝜽 log 𝜋𝜽0 (𝝉)
]
≠ ∇𝜽0𝜽1

(21)

The main reason of biased Hessian estimation is that automatic differentiation tools only consider the
dependency of 𝜽 in ∇𝜽 log 𝜋𝜽 while ignoring the dependency in expectation 𝔼𝝉∼𝑝 (𝝉;𝜽0) . In practice,
the 𝔼𝝉∼𝑝 (𝝉;𝜽0) is represented by trajectory sampling so the gradient term ∇𝜽𝔼𝝉∼𝑝 (𝝉;𝜽0) is 0 using
automatic differentiation. We need to add additional terms to further derive the gradient ∇𝜽𝔼𝝉∼𝑝 (𝝉;𝜽0)
brought by sampling dependency.

D Limitations on Assumptions

Assumption 4.1-4.3 are standard assumptions used in various theoretical MAML-RL papers [6, 7, 18].
The Lipschitz continuity assumptions in Assumption 4.1 make sure we can work with nonconvex
inner and outer objectives. The unbiased first-order gradient estimators assumptions in Assumption
4.2 can highlight our findings on two source of biases, which is also a plausible assumption in GMRL
settings. As typically adopted in the analysis for stochastic optimization, we make the bounded-
variance assumption in Assumption 4.3. Assumption 4.1-4.3 can be conveniently verified for e.g.,
inner-loop RL optimization in tabular MDP settings (finite state space and action space) with soft-max
parameterisation of the policy, where 𝜋𝜽 (𝒂 | 𝒔) ∝ exp(𝜽 (𝒔, 𝒂)) with parameter 𝜽 = 𝜽 (𝒔, 𝒂). But in
large-scale RL settings like atari games, Assumption 4.1-4.3 will not hold anymore.

E Proof of Proposition in Section 3

In this section, we provide the proof for Proposition 3.1 in Section 3.

E.1 Proof of Proposition 3.1

Proposition 3.1 (𝐾-step Meta-Gradient). The exact meta-gradient to the objective in Eq. (2) can be
written as:

∇𝝓𝐽
𝐾 (𝝓) = ∇𝝓𝐽

Out (𝝓, 𝜽𝐾 ) + 𝛼∇𝝓𝜽
𝐾∇𝜽𝐾 𝐽

Out (𝝓, 𝜽𝐾 ),

∇𝝓𝜽
𝐾 =

𝐾−1∑︁
𝑖=0

∇𝝓∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖)

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (𝝓, 𝜽 𝑗 )

)
.

(3)

Proof. According to post-update inner parameters 𝜽𝐾 = 𝜽0 + 𝛼∑𝐾−1
𝑖=0 ∇𝜽𝑖 𝐽

In (𝝓, 𝜽 𝑖) and the fact that
∇𝜽𝑖 𝐽

In (𝝓, 𝜽 𝑖) is differentiable w.r.t. 𝝓, we can treat 𝜽𝐾 as a differentiable function w.r.t. 𝝓. Based on
the chain rule, we can get

∇𝝓𝐽
𝐾 (𝝓) = ∇𝝓𝐽

Out (𝝓, 𝜽𝐾 ) + ∇𝝓𝜽
𝐾∇𝜽𝐾 𝐽

Out (𝝓, 𝜽𝐾 ) (22)
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Based on the iterative updates that 𝜽 𝑖+1 = 𝜽 𝑖 + 𝛼∇𝜽𝑖 𝐽
𝐼 𝑛 (𝝓, 𝜽 𝑖), for 𝑖 = 0, . . . , 𝐾 − 1 and similarly

treat 𝜽 𝑖 as a differentiable function w.r.t. 𝝓, we have

∇𝝓𝜽
𝑖+1 =∇𝝓𝜽

𝑖 + 𝛼∇𝝓∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖) + 𝛼∇𝝓𝜽

𝑖∇2
𝜽𝑖
𝐽In (𝝓, 𝜽 𝑖)

=∇𝝓𝜽
𝑖
(
𝐼 + 𝛼∇2

𝜽𝑖
𝐽In (𝝓, 𝜽 𝑖)

)
+ 𝛼∇𝝓∇𝜽𝑖 𝐽

In (𝝓, 𝜽 𝑖)
(23)

Telescoping the above equality over 𝑖 from 0 to 𝐾 − 1, we can get

∇𝝓𝜽
𝐾 =∇𝝓𝜽

0
𝐾−1∏
𝑖=0

(
𝐼 + 𝛼∇2

𝜽𝑖
𝐽In (𝝓, 𝜽 𝑖)

)
+ 𝛼

𝐾−1∑︁
𝑖=0

∇𝝓∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖)

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (𝝓, 𝜽 𝑗 )

)
=𝛼

𝐾−1∑︁
𝑖=0

∇𝝓∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖)

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (𝝓, 𝜽 𝑗 )

) (24)

Combining Eq. (22) and Eq. (24) finishes the proof of Proposition 3.1. �

F Proof of Lemma in Section 4

F.1 Proof of Lemma 4.4

Lemma 4.4 (Compositional Bias). Suppose that Assumption 4.1 and 4.2 hold, let Δ̂𝐶 = 𝔼[‖ 𝑓 (�̂�𝐾 ) −
𝑓 (𝜽𝐾 )‖] be the compositional bias and 𝐶0 the Lipschitz constant of 𝑓 (·), |𝝉 | denote number of
trajectories used to estimate inner-loop gradient in each inner-loop update step, 𝛼 the learning rate,
then we have,

Δ̂𝐶 ≤ 𝐶0𝔼[‖�̂�𝐾 − 𝜽𝐾 ‖] ≤ 𝐶0

(
(1 + 𝛼𝑐2)𝐾 − 1

) �̂�In

𝑐2
√︁
|𝝉 |
, (6)

where �̂�In = max𝑖
√︃
𝕍[∇𝜽𝑖 𝐽

In (𝝓, 𝜽 𝑖 , 𝝉𝑖0)], 𝑖 ∈ {0, .., 𝐾 − 1}.

Proof. In expected policy gradient inner-loop update setting, the iterative updates takes the form

𝜽 𝑖+1 = 𝜽 𝑖 + 𝛼∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖), 𝑖 = 0, . . . , 𝐾 − 1 (25)

In Eq. (4), 𝜽 𝑖+1 are estimated using samples 𝝉0:𝑖
0 , then we have

�̂�
𝑖+1

= �̂�
𝑖 + 𝛼∇

�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖0), �̂�

0
= 𝜽0, 𝑖 = 0, . . . , 𝐾 − 1 (26)

According to the assumption that non-linear compositional vector-valued 𝑓 (·) is Lipschitz continuous
with constant 𝐶0, we can get

𝔼𝝉0:𝐾−1
0

[‖ 𝑓 (�̂�𝐾 ) − 𝑓 (𝜽𝐾 )‖] ≤ 𝐶0𝔼𝝉0:𝐾−1
0

[�̂�𝐾 − 𝜽𝐾
] (27)
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Based on Eq. (25) and Eq. (26), we can get

𝔼𝝉0:𝐾−1
0

[�̂�𝐾 − 𝜽𝐾
]

=𝔼𝝉0:𝐾−1
0

[�̂�𝐾−1 − 𝜽𝐾−1 + 𝛼∇𝜽𝐾−1𝐽In (𝝓, 𝜽𝐾−1) − 𝛼∇
�̂�
𝐾−1𝐽In (𝝓, �̂�𝐾−1

, 𝝉𝐾−1
0 )

]
(𝑖)
≤𝔼𝝉0:𝐾−1

0

[�̂�𝐾−1 − 𝜽𝐾−1
] + 𝛼𝔼𝝉0:𝐾−1

0

[∇𝜽𝐾−1𝐽In (𝝓, 𝜽𝐾−1) − 𝔼𝝉𝐾−1
0

[∇
�̂�
𝐾−1𝐽In (𝝓, �̂�𝐾−1

, 𝝉𝐾−1
0 )]

] +
𝛼𝔼𝝉0:𝐾−1

0

[𝔼𝝉𝐾−1
0

[∇
�̂�
𝐾−1𝐽In (𝝓, �̂�𝐾−1

, 𝝉𝐾−1
0 )] − ∇

�̂�
𝐾−1𝐽In (𝝓, �̂�𝐾−1

, 𝝉𝐾−1
0 )

]
≤𝔼𝝉0:𝐾−1

0

[�̂�𝐾−1 − 𝜽𝐾−1
] + 𝛼𝑐2𝔼𝝉0:𝐾−1

0

[�̂�𝐾−1 − 𝜽𝐾−1
] +

𝛼𝔼𝝉0:𝐾−1
0

[𝔼𝝉𝐾−1
0

[∇
�̂�
𝐾−1𝐽In (𝝓, �̂�𝐾−1

, 𝝉𝐾−1
0 )] − ∇

�̂�
𝐾−1𝐽In (𝝓, �̂�𝐾−1

, 𝝉𝐾−1
0 )

]
≤(1 + 𝛼𝑐2)𝔼𝝉0:𝐾−1

0

[�̂�𝐾−1 − 𝜽𝐾−1
] +

𝛼𝔼𝝉0:𝐾−2
0

[
𝔼𝝉𝐾−1

0

[𝔼𝝉𝐾−1
0

[∇
�̂�
𝐾−1𝐽In (𝝓, �̂�𝐾−1

, 𝝉𝐾−1
0 )] − ∇

�̂�
𝐾−1𝐽In (𝝓, �̂�𝐾−1

, 𝝉𝐾−1
0 )

 | 𝝉0:𝐾−2
0

] ]

≤(1 + 𝛼𝑐2)𝔼𝝉0:𝐾−1
0

[�̂�𝐾−1 − 𝜽𝐾−1
] + 𝛼𝔼𝝉0:𝐾−2

0


√√√√

𝕍

[
∇
�̂�
𝐾−1𝐽In

(
𝝓, �̂�

𝐾−1
, 𝝉𝐾−1

0

)
| 𝝉0:𝐾−2

0

]
|𝝉𝐾−1

0 |


(28)

where (𝑖) follows from Lemma H.3 and Assumption 4.2.

Let �̂�In = max𝑖
√︃
𝕍[∇

�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝜏𝑖0)], |𝝉 | = |𝜏𝑖0 |, 𝑖 ∈ {0, . . . , 𝐾 − 1}

𝔼𝝉0:𝐾−1
0

[�̂�𝐾 − 𝜽𝐾
] ≤ (1 + 𝛼𝑐2)𝔼𝝉0:𝐾−1

0

[�̂�𝐾−1 − 𝜽𝐾−1
] + 𝛼 �̂�In√︁

|𝝉 |
(29)

Iteratively, we can get

𝔼𝝉0:𝐾−1
0

[�̂�𝐾 − 𝜽𝐾
] ≤

(
1 + . . . + (1 + 𝛼𝑐2)𝐾−1

)
𝛼
�̂�In√︁
|𝝉 |

=

(
(1 + 𝛼𝑐2)𝐾 − 1

) �̂�In

𝑐2
√︁
|𝝉 |

(30)

which concludes the proof of Lemma 4.4. �

G Proof of Theorem in Section 4

G.1 Proof of Theorem 4.5

Theorem 4.5 (Upper bound for the bias and the variance). Suppose that Assumption 4.1 and 4.2
and 4.3 hold. Let 𝐽𝝓,𝜽 denote ∇𝝓∇𝜽𝐽

In, 𝐻𝜽,𝜽 denote ∇2
𝜽𝐽

In, Δ̂𝐾 = ‖𝔼[∇𝝓𝐽
𝐾 (𝝓)] − ∇𝝓𝐽

𝐾 (𝝓)‖ be the
meta-gradient estimation bias, set 𝐵 = 1 + 𝛼𝑐2. Then the bound of bias hold:

Δ̂𝐾 ≤ O
(
(𝐵 + Δ̂𝐻 )𝐾−1

(
𝔼[‖�̂�𝐾 − 𝜽𝐾 ‖] + Δ̂𝐽 + (𝐾 − 1)

) )
. (9)
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Let (�̂�𝐾 )2 = 𝕍
[
∇𝝓𝐽

𝐾 (𝝓)
]

be the meta-gradient estimation variance, set 𝑉1 = (1 + 𝛼𝑐2)2, 𝑉2 =

2𝛼2 (𝑚2
1 + 3𝜎2

2 ) the estimation variance is given by

(�̂�𝐾 )2 ≤ O
(
(𝑉1 + Δ̂2

𝐻 )𝐾−1
(
𝔼[‖�̂�𝐾 − 𝜽𝐾 ‖2] + (𝐾 − 1)

)
+

(
𝑉2 + (𝑉1 + Δ̂2

𝐻 + �̂�2
𝐻 )𝐾−1 − (𝑉1 + Δ̂2

𝐻 )𝐾−1
)
(Δ̂2
𝐽 + �̂�2

𝐽 )
)
.

(10)

where Δ̂𝐽 = max𝝓×𝜽 ‖𝔼[𝐽𝝓,𝜽] − 𝐽𝝓,𝜽 ‖. Δ̂𝐻 = max𝜽 ‖𝔼[�̂�𝜽,𝜽] − 𝐻𝜽,𝜽 ‖. (�̂�𝐽 )2 =
max𝝓×𝜽 𝕍[𝐽𝝓,𝜽 ]

|𝜏 | .

(�̂�𝐻 )2 =
max𝜽 𝕍[�̂�𝜽,𝜽 ]

|𝜏 | .

Proof. According to Proposition 3.1, exact meta-gradient ∇𝝓𝐽
K (𝝓) takes the form

∇𝝓𝐽
Out (𝝓, 𝜽𝐾 ) + 𝛼

𝐾−1∑︁
𝑖=0

∇𝝓∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖)

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (𝝓, 𝜽 𝑗 )

)
∇𝜽𝐾 𝐽

Out (𝝓, 𝜽𝐾 ) (31)

where
𝜽 𝑖+1 = 𝜽 𝑖 + 𝛼∇𝜽𝑖 𝐽

In (𝝓, 𝜽 𝑖), 𝑖 = 0, . . . , 𝐾 − 1 (32)

Acoordingly, in Eq. (4), 𝐾-step meta-gradient estimator ∇𝝓𝐽
K (𝝓) takes the form

∇𝝓𝐽
Out (𝝓, �̂�𝐾 , 𝝉3) + 𝛼

𝐾−1∑︁
𝑖=0

∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)
)
∇
�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3)

(33)

where
�̂�
𝑖+1

= �̂�
𝑖 + 𝛼∇

�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖0), �̂�

0
= 𝜽0, 𝑖 = 0, . . . , 𝐾 − 1 (34)

Hence the expectation of meta-gradient estimator takes the form

𝔼𝝉0:𝐾−1
0 ,𝝉0:𝐾−1

1 ,𝝉1:𝐾−1
2 ,𝝉3

[∇𝝓𝐽
K (𝝓)]

=𝔼𝝉0:𝐾−1
0

[
𝔼𝝉3 [∇𝝓𝐽

Out (𝝓, �̂�𝐾 , 𝝉3) | 𝝉0:𝐾−1
0 ] + 𝛼

𝐾−1∑︁
𝑖=0

𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) | 𝝉
0:𝑖−1
0 ]×

𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0: 𝑗−1
0 ] × 𝔼𝝉3 [∇�̂�

𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3) | 𝝉0:𝐾−1
0 ]

] (35)

we can then derive meta-gradient bias in 𝐾-step expected policy gradient setting,

𝔼𝝉0:𝐾−1
0 ,𝝉0:𝐾−1

1 ,𝝉0:𝐾−1
2 ,𝝉3

[∇𝝓𝐽
K (𝝓)] − ∇𝝓𝐽

K (𝝓)


≤𝔼𝝉0:𝐾−1
0

[𝔼𝝉3 [∇𝝓𝐽
Out (𝝓, �̂�𝐾 , 𝝉3) | 𝝉0:𝐾−1

0 ] + 𝛼
𝐾−1∑︁
𝑖=0

𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) | 𝝉
0:𝑖−1
0 ]×

𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ] × 𝔼𝝉3 [∇�̂�

𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3) | 𝝉0:𝐾−1
0 ]−

∇𝝓𝐽
Out (𝝓, 𝜽𝐾 ) − 𝛼

𝐾−1∑︁
𝑖=0

∇𝝓∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖)

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (𝝓, 𝜽 𝑗 )

)
∇𝜽𝐾 𝐽

Out (𝝓, 𝜽𝐾 )
]

(36)
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≤𝔼𝝉0:𝐾−1
0

[𝔼𝝉3 [∇𝝓𝐽
Out (𝝓, �̂�𝐾 , 𝝉3) | 𝝉0:𝐾−1

0 ] − ∇𝝓𝐽
Out (𝝓, 𝜽𝐾 )

]
+ 𝔼𝝉0:𝐾−1

0

[𝛼 𝐾−1∑︁
𝑖=0

𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) | 𝝉
0:𝑖−1
0 ] ×

𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ]

× 𝔼𝝉3 [∇�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3) | 𝝉0:𝐾−1

0 ]

− 𝛼
𝐾−1∑︁
𝑖=0

∇𝝓∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖)

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (

𝝓, 𝜽 𝑗
) )

∇𝜽𝐾 𝐽
Out (𝝓, 𝜽𝐾 )

]
(𝑖)
≤𝔼𝝉0:𝐾−1

0

[∇𝝓𝐽
Out (𝝓, �̂�𝐾 ) − ∇𝝓𝐽

Out (𝝓, 𝜽𝐾 )
 | 𝝉0:𝐾−1

0

]
+ 𝔼𝝉0:𝐾−1

0

[𝛼 𝐾−1∑︁
𝑖=0

𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) | 𝝉
0:𝑖−1
0 ] ×

𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ]

× 𝔼𝝉3 [∇�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3) | 𝝉0:𝐾−1

0 ]−

𝛼

𝐾−1∑︁
𝑖=0

∇𝝓∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖)

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (

𝝓, 𝜽 𝑗
) )

∇𝜽𝐾 𝐽
Out (𝝓, 𝜽𝐾 )

]
(37)

where (𝑖) follows from Assumption 4.2.

(𝑖𝑖)
≤ 𝜇1𝔼𝝉0:𝐾−1

0

[�̂�𝐾 − 𝜽𝐾
 | 𝝉0:𝐾−1

0

]
+ 𝔼𝝉0:𝐾−1

0

[𝛼 𝐾−1∑︁
𝑖=0

𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) | 𝝉
0:𝑖−1
0 ] ×

𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ]

× 𝔼𝝉3 [∇�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3) | 𝝉0:𝐾−1

0 ] − 𝛼
𝐾−1∑︁
𝑖=0

∇𝝓∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖)

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (

𝝓, 𝜽 𝑗
) )

∇𝜽𝐾 𝐽
Out (𝝓, 𝜽𝐾 )

]
(38)

where (𝑖𝑖) follows from Assumption 4.1 on Lipschitz Continuity of ∇𝝓𝐽
Out

(𝑖𝑖𝑖)
≤ 𝜇1𝔼𝝉0:𝐾−1

0

[�̂�𝐾 − 𝜽𝐾
 | 𝝉0:𝐾−1

0

]
+ 𝛼

𝐾−1∑︁
𝑖=0

𝔼𝝉0:𝐾−1
0

[𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) | 𝝉
0:𝑖−1
0 ]×

𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ] × 𝔼𝝉3 [∇�̂�

𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3) | 𝝉0:𝐾−1
0 ]−

∇𝝓∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖)

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (

𝝓, 𝜽 𝑗
) )

∇𝜽𝐾 𝐽
Out (𝝓, 𝜽𝐾 )

]
(39)
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where (𝑖𝑖𝑖) follows from Lemma H.3. Using the similar add-minus trick in the proof of Lemma 4.4,
we can have

(𝑖𝑣)
≤ 𝜇1𝔼𝝉0:𝐾−1

0

[�̂�𝐾 − 𝜽𝐾
 | 𝝉0:𝐾−1

0

]
+ 𝛼

𝐾−1∑︁
𝑖=0

𝔼𝝉0:𝐾−1
0

[ 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ] × 𝔼𝝉3 [∇�̂�

𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3) | 𝝉0:𝐾−1
0 ]−

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (

𝝓, 𝜽 𝑗
) )

∇𝜽𝐾 𝐽
Out (𝝓, 𝜽𝐾 )

] × ‖∇𝝓∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖)‖+

𝔼𝝉0:𝐾−1
0

[𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) | 𝝉
0:𝑖−1
0 ] − ∇𝝓∇𝜽𝑖 𝐽

In (𝝓, 𝜽 𝑖)
]×𝔼𝝉0:𝐾−1

0

[ 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 − ∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ] × 𝔼𝝉3 [∇�̂�

𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3) | 𝝉0:𝐾−1
0 ]

]
(40)

Based on Assumption 4.1 and Assumption 4.2, we can change the expectation of unbiased first-order
stochastic estimator to respective first-order gradient function, then we can replace it with Lipschitz
constants.

≤𝜇1𝔼𝝉0:𝐾−1
0

[�̂�𝐾 − 𝜽𝐾
 | 𝝉0:𝐾−1

0

]
+ 𝛼

𝐾−1∑︁
𝑖=0

[
𝔼𝝉0:𝐾−1

0

[ 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ] −

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (

𝝓, 𝜽 𝑗
) ) ]×∇𝜽𝐾 𝐽

Out (𝝓, 𝜽𝐾 )
 + 𝔼𝝉0:𝐾−1

0

[𝔼𝝉3 [∇�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3) | 𝝉0:𝐾−1

0 ] − ∇𝜽𝐾 𝐽
Out (𝝓, 𝜽𝐾 )

]×𝔼𝝉0:𝐾−1
0

[ 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ]

]] × ‖∇𝝓∇𝜽𝑖 𝐽
In (𝝓, 𝜽 𝑖)‖+

𝔼𝝉0:𝐾−1
0

[𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) | 𝝉
0:𝑖−1
0 ] − ∇𝝓∇𝜽𝑖 𝐽

In (𝝓, 𝜽 𝑖)
]×

𝔼𝝉0:𝐾−1
0

[ 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ]

 ×
𝔼𝝉3 [∇�̂�

𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3) | 𝝉0:𝐾−1
0 ]

]
(41)
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≤𝜇1𝔼𝝉0:𝐾−1
0

[�̂�𝐾 − 𝜽𝐾
]

+ 𝛼
𝐾−1∑︁
𝑖=0

𝑐1

[
𝑚2𝔼𝝉0:𝐾−1

0

[ 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ] −

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (

𝝓, 𝜽 𝑗
) ) ]

+ 𝜇2𝔼𝝉0:𝐾−1
0

[�̂�𝐾 − 𝜽𝐾
] × 𝔼𝝉0:𝐾−1

0

[ 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ]

]]+
𝔼𝝉0:𝐾−1

0

[𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) | 𝝉
0:𝑖−1
0 ] − ∇𝝓∇𝜽𝑖 𝐽

In (𝝓, 𝜽 𝑖)
]×

𝑚2

𝔼𝝉0:𝐾−1
0

[ 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ]

]
(42)

≤𝜇1𝔼𝝉0:𝐾−1
0

[�̂�𝐾 − 𝜽𝐾
]

+ 𝛼
𝐾−1∑︁
𝑖=0

𝑐1𝑚2 𝔼𝝉0:𝐾−1
0

[ 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ] −

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (

𝝓, 𝜽 𝑗
) ) ]︸                                                                                                          ︷︷                                                                                                          ︸

Term (i)

+
[
𝑐1𝜇2𝔼𝝉0:𝐾−1

0

[�̂�𝐾 − 𝜽𝐾
] + 𝑚2 𝔼𝝉0:𝐾−1

0

[𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) | 𝝉
0:𝑖−1
0 ] − ∇𝝓∇𝜽𝑖 𝐽

In (𝝓, 𝜽 𝑖)
]︸                                                                                ︷︷                                                                                ︸

Term (ii)

]
×

𝔼𝝉0:𝐾−1
0

[ 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ]

]︸                                                                 ︷︷                                                                 ︸
Term (iii)

(43)
Let 𝐽𝝓,𝜽 denote ∇𝝓∇𝜽𝐽

In, 𝐻𝜽,𝜽 denote ∇2
𝜽𝐽

In ,Δ̂𝐽 = max ‖𝔼[𝐽𝝓,𝜽] − 𝐽𝝓,𝜽 ‖. Δ̂𝐻 = max ‖𝔼[�̂�𝜽,𝜽] −
𝐻𝜽,𝜽 ‖. (�̂�𝐽 )2 =

max𝕍[𝐽𝝓,𝜽 ]
|𝜏 | . (�̂�𝐻 )2 =

max𝕍[�̂�𝜽,𝜽 ]
|𝜏 | . We upper bound terms (i)-(ii) in Eq. (43)

respectively, that is,
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Term (i). According to

𝔼𝝉0:𝐾−1
0

[ 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ] −

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽In (

𝝓, 𝜽 𝑗
) ) ]

≤𝔼𝝉0:𝐾−1
0

[ 𝐾−2∏
𝑗=𝑖+1

(𝐼 + 𝛼𝑐2 + 𝛼Δ̂𝐻 )
] (
𝛼Δ̂𝐻 + 𝛼𝜌2

(
(1 + 𝛼𝑐2)𝐾−1 − 1

) �̂�In

𝑐2
√︁
|𝝉 |

)
+ (1 + 𝛼𝑐2)×

𝔼𝝉0:𝐾−1
0

[ 𝐾−2∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽
𝐼 𝑛 (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉

0:𝑖−1
0 ] −

𝐾−2∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

𝜽 𝑗
𝐽 𝐼 𝑛

(
𝝓, 𝜽 𝑗

) ) ]
≤𝛼

[
(1 + 𝛼𝑐2 + 𝛼Δ̂𝐻 )𝐾−𝑖−1 − (1 + 𝛼𝑐2)𝐾−𝑖−1

]
+ 𝜌2
𝑐2

(
(1 + 𝛼𝑐2 + 𝛼Δ̂𝐻 )𝐾−𝑖−1 − 1

)
(1 + 𝛼𝑐2)𝐾−1 �̂�In

𝑐2
√︁
|𝝉 |

(44)

Term (ii).

𝔼𝝉0:𝐾−1
0

[𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) | 𝝉
0:𝑖−1
0 ] − ∇𝝓∇𝜽𝑖 𝐽

In (𝝓, 𝜽 𝑖)
]

≤𝔼𝝉0:𝐾−1
0

[𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) | 𝝉
0:𝑖−1
0 ] − ∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖)
]+

𝔼𝝉0:𝐾−1
0

[∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖) − ∇𝝓∇𝜽𝑖 𝐽

In (𝝓, 𝜽 𝑖) | 𝝉0:𝑖−1
0 ]

]
(45)

𝔼𝝉0:𝐾−1
0

[𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) | 𝝉
0:𝑖−1
0 ] − ∇𝝓∇𝜽𝑖 𝐽

In (𝝓, 𝜽 𝑖)
]

≤𝔼𝝉0:𝐾−1
0

[
Δ̂𝐽

]
+ 𝜆2𝔼𝝉0:𝐾−1

0

[�̂� 𝑖 − 𝜽 𝑖
]

≤Δ̂𝐽 + 𝜆2𝔼𝝉0:𝐾−1
0

[�̂� 𝑖 − 𝜽 𝑖
]

(46)

Term (iii).

𝔼𝝉0:𝐾−1
0

[ 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ]

]
≤𝔼𝝉0:𝐾−1

0

[ 𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼

𝔼𝝉
𝑗

2
[∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ] − ∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 )
 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 )
)]

(47)
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𝔼𝝉0:𝐾−1
0

[ 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2) | 𝝉
0:𝑖−1
0 ]

]
≤𝔼𝝉0:𝐾−1

0

[ 𝐾−1∏
𝑗=𝑖+1

(1 + 𝛼𝑐2 + 𝛼Δ̂𝐻 ) | 𝝉0:𝑖−1
0 ]

]
≤(1 + 𝛼𝑐2 + 𝛼Δ̂𝐻 )𝐾−𝑖−1

(48)

Then combine terms (i)-(iii) together, that is

𝔼𝝉0:𝐾−1
0 ,𝝉0:𝐾−1

1 ,𝝉0:𝐾−1
2 ,𝝉3

[∇𝝓𝐽
K (𝝓)] − ∇𝝓𝐽

K (𝝓)


≤𝜇1

(
(1 + 𝛼𝑐2)𝐾 − 1

) �̂�In

𝑐2
√︁
|𝝉 |

+ 𝛼
𝐾−1∑︁
𝑖=0

𝛼𝑐1𝑚2

[
(1 + 𝛼𝑐2 + 𝛼Δ̂𝐻 )𝐾−𝑖−1 − (1 + 𝛼𝑐2)𝐾−𝑖−1

]
+ 𝑐1𝑚2

𝜌2
𝑐2

(
(1 + 𝛼𝑐2 + Δ̂𝐻 )𝐾−𝑖−1 − 1

)
(1 + 𝛼𝑐2)𝐾−1 �̂�In

𝑐2
√︁
|𝝉 |

+ (1 + 𝛼𝑐2 + Δ̂𝐻 )𝐾−𝑖−1

[
𝑐1𝜇2

(
(1 + 𝛼𝑐2)𝐾 − 1

) �̂�In

𝑐2
√︁
|𝝉 |

+ 𝑚2Δ̂𝐽 + 𝑚2𝜆2
(
(1 + 𝛼𝑐2)𝑖 − 1

) �̂�In

𝑐2
√︁
|𝝉 |

]
≤(𝜇1 + 𝛼(𝑐1𝑚2

𝜌2
𝑐2

+ 𝑐1𝜇2 + 𝑚2𝜆2))
(
((1 + 𝛼𝑐2)𝐾 − 1

) (
(1 + 𝛼𝑐2 + 𝛼Δ̂𝐻 )𝐾−1 − 1

) �̂�𝐼 𝑛

𝑐2
√︁
|𝝉 |

+ (𝛼𝑚2)
(
(1 + 𝛼𝑐2 + 𝛼Δ̂𝐻 )𝐾−1 − 1

)
Δ̂𝐽

+ (𝛼2𝑐1𝑚2)
(
(1 + 𝛼𝑐2 + 𝛼Δ̂𝐻 )𝐾−1 − (1 + 𝛼𝑐2)𝐾−1

)
(49)𝔼𝝉0:𝐾−1

0 ,𝝉0:𝐾−1
1 ,𝝉0:𝐾−1

2 ,𝝉3
[∇𝝓𝐽

K (𝝓)] − ∇𝝓𝐽
K (𝝓)


≤O

(
(1 + 𝛼𝑐2 + 𝛼Δ̂𝐻 )𝐾−1

(
𝔼[‖�̂�𝐾 − 𝜽𝐾 ‖] + Δ̂𝐽 + (𝐾 − 1)

) ) (50)

which concludes the proof of upper bound of meta-gradient bias.

According to Lemma H.7,

𝕍
[
∇𝝓𝐽

K (𝝓)
]
= 𝕍

[
𝔼𝝉0:𝐾−1

1 ,𝝉1:𝐾−1
2 ,𝝉3

[
∇𝝓𝐽

K (𝝓) | 𝝉0:𝐾−1
0

] ]︸                                                ︷︷                                                ︸
Term (i)

+𝔼𝝉0:𝐾−1
0

[
𝕍

[
∇𝝓𝐽

K (𝝓) | 𝝉0:𝐾−1
0

] ]︸                                    ︷︷                                    ︸
Term (ii)

(51)

We upper bound terms (i)-(ii) in Eq. (51) respectively, that is,

Term (i).

𝕍

[
𝔼𝝉0:𝐾−1

1 ,𝝉1:𝐾−1
2 ,𝝉3

[
∇𝝓𝐽

K (𝝓) | 𝝉0:𝐾−1
0

] ]
=𝔼𝝉0:𝐾−1

0

[𝔼𝝉0:𝐾−1
1 ,𝝉1:𝐾−1

2 ,𝝉3

[
∇𝝓𝐽

K (𝝓) | 𝝉0:𝐾−1
0

]
− 𝔼𝝉0:𝐾−1

0 ,𝝉0:𝐾−1
1 ,𝝉1:𝐾−1

2 ,𝝉3

[
∇𝝓𝐽

K (𝝓)
]2

]
≤𝔼𝝉0:𝐾−1

0

[𝔼𝝉0:𝐾−1
1 ,𝝉1:𝐾−1

2 ,𝝉3

[
∇𝝓𝐽

K (𝝓) | 𝝉0:𝐾−1
0

]
− ∇𝝓𝐽

K (𝝓)
2

] (52)
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According to proof of upper bound of bias term, together with Lemma H.5 (ii).

𝔼𝝉0:𝐾−1
0 ,𝝉0:𝐾−1

1 ,𝝉0:𝐾−1
2 ,𝝉3

[∇𝝓𝐽
K (𝝓)] − ∇𝝓𝐽

K (𝝓)


≤𝜇1

(
(1 + 𝛼𝑐2)𝐾 − 1

) �̂�In

𝑐2
√︁
|𝝉 |

+ 𝛼
𝐾−1∑︁
𝑖=0

𝛼𝑐1𝑚2

[
(1 + 𝛼𝑐2 + Δ̂𝐻 )𝐾−𝑖−1 − (1 + 𝛼𝑐2)𝐾−𝑖−1

]
+ 𝑐1𝑚2

𝜌2
𝑐2

(
(1 + 𝛼𝑐2 + Δ̂𝐻 )𝐾−𝑖−1 − 1

)
(1 + 𝛼𝑐2)𝐾−1 �̂�In

𝑐2
√︁
|𝝉 |

+ (1 + 𝛼𝑐2 + Δ̂𝐻 )𝐾−𝑖−1

[
𝑐1𝜇2

(
(1 + 𝛼𝑐2)𝐾 − 1

) �̂�In

𝑐2
√︁
|𝝉 |

+ 𝑚2Δ̂𝐽 + 𝑚2𝜆2
(
(1 + 𝛼𝑐2)𝑖 − 1

) �̂�In

𝑐2
√︁
|𝝉 |

]
(53)

𝕍

[
𝔼𝝉0:𝐾−1

1 ,𝝉1:𝐾−1
2 ,𝝉3

[
∇𝝓𝐽

K (𝝓) | 𝝉0:𝐾−1
0

] ]
≤4𝐾

(
2𝜇2

1 + 2𝐾𝛼2 (𝑐1𝑚2
𝜌2
𝑐2

+ 𝑐1𝜇2 + 𝑚2𝜆2)2
)
×( (

(1 + 𝛼𝑐2)2 + 𝛼2𝑐2
2

)𝐾
− 1

) ( (
(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2

)𝐾−1
− 1

)
(�̂�In)2

𝑐2
2 |𝝉 |

+ (2𝐾𝛼2𝑚2
2)

( (
(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2

)𝐾−1
− 1

)
(Δ̂𝐽 )2

+ (2𝐾𝛼4𝑐2
1𝑚

2
2)

( (
(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2

)𝐾−1
−

(
(1 + 𝛼𝑐2)2 + 𝛼2𝑐2

2

)𝐾−1
)

(54)
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Term (ii).

𝔼𝝉0:𝐾−1
0

[
𝕍

[
∇𝝓𝐽

K (𝝓) | 𝝉0:𝐾−1
0

] ]
=𝔼𝝉0:𝐾−1

0

[
𝔼𝝉0:𝐾−1

1 ,𝝉1:𝐾−1
2 ,𝝉3

[∇𝝓𝐽
K (𝝓) − 𝔼𝝉0:𝐾−1

1 ,𝝉1:𝐾−1
2 ,𝝉3

[
∇𝝓𝐽

K (𝝓)
]2

| 𝝉0:𝐾−1
0

] ]
≤𝔼𝝉0:𝐾−1

0

[
2𝔼𝝉0:𝐾−1

1 ,𝝉1:𝐾−1
2 ,𝝉3

[∇𝝓𝐽
Out (𝝓, �̂�𝐾 , 𝝉3) − 𝔼𝝉3 [∇𝝓𝐽

Out (𝝓, �̂�𝐾 , 𝝉3)]
2]

+

2𝛼2𝔼𝝉0:𝐾−1
1 ,𝝉1:𝐾−1

2 ,𝝉3

[ 𝐾−1∑︁
𝑖=0

∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)

𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)
)
∇
�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3)

−
𝐾−1∑︁
𝑖=0

𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)]
𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)]𝔼𝝉3 [∇�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3)]

2]
| 𝝉0:𝐾−1

0

]
≤𝔼𝝉0:𝐾−1

0

[
2(𝜎1)2 + 2𝐾𝛼2

𝐾−1∑︁
𝑖=0

∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)

2
×

𝔼𝝉0:𝐾−1
1 ,𝝉1:𝐾−1

2 ,𝝉3

[ 𝐾−1∏
𝑗=𝑖+1

(
𝐼 − 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)
)
∇
�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3)−

𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)]𝔼𝝉3 [∇�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3)]

2]
+ 𝐾−1∏

𝑗=𝑖+1
𝔼𝝉

𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)]𝔼𝝉3 [∇�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3)]

2

𝔼𝝉0:𝐾−1
1 ,𝝉1:𝐾−1

2 ,𝝉3

[∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) − 𝔼𝝉𝑖1

[∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)]

2]
| 𝝉0:𝐾−1

0

]
(55)

≤𝔼𝝉0:𝐾−1
0

[
2(𝜎1)2 + 2𝐾𝛼2

𝐾−1∑︁
𝑖=0

[∇�̂�
𝐾 𝐽Out (𝝓, �̂�𝐾 , 𝜏3)

2∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)

2
×

𝔼𝝉0:𝐾−1
1 ,𝝉1:𝐾−1

2 ,𝝉3

[ 𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)
)
−
𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)]
2]

+

(𝜎2)2
 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)]
2∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)
2

]
+

𝑚2
2

 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)]
2
×

𝔼𝝉0:𝐾−1
1 ,𝝉1:𝐾−1

2 ,𝝉3

[∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) − 𝔼𝝉𝑖1

[∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)]

2]
| 𝝉0:𝐾−1

0

]
(56)
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≤𝔼𝝉0:𝐾−1
0

[
2(𝜎1)2 + 2𝐾𝛼2

𝐾−1∑︁
𝑖=0

[(
2𝑚2

2 + 2(𝜎2)2
)
×

∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)

2
×

𝔼𝝉0:𝐾−1
1 ,𝝉1:𝐾−1

2 ,𝝉3

[ 𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)
)
−
𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)]
2]

︸                                                                                                                ︷︷                                                                                                                ︸
Part (I)

+

(𝜎2)2
 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)]
2

×
∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)
2

︸                       ︷︷                       ︸
Part (II)

+

𝑚2
2

 𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)]
2

︸                                           ︷︷                                           ︸
Part (III)

×

𝔼𝝉0:𝐾−1
1 ,𝝉1:𝐾−1

2 ,𝝉3

[∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1) − 𝔼𝝉𝑖1

[∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)]

2]
| 𝝉0:𝐾−1

0

]

(57)

Part (I) According to

𝔼𝝉0:𝐾−1
1 ,𝝉1:𝐾−1

2 ,𝝉3

[ 𝐾−1∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)
)
−
𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)]
2]

≤2
𝐾−2∏
𝑗=𝑖+1

(
3(1 + 𝛼𝑐2)2 + 3𝛼2 (Δ̂𝐻 )2 + 3𝛼2 (�̂�𝐻 )2

)
× 𝛼2 (�̂�𝐻 )2+

4

(
(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2

)
×

𝔼𝝉1:𝐾−1
2

[( 𝐾−2∏
𝑗=𝑖+1

(
𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)
)
−
𝐾−2∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

𝜽𝐽
In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)]

)2]
≤6𝐾−𝑖−1

[ (
(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2 + 𝛼2 (�̂�𝐻 )2

)𝐾−𝑖−1
−

(
(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2

)𝐾−𝑖−1
]

(58)

Part (II) According to the supporting Lemma

∇𝝓∇𝜽0𝐽In (𝝓, 𝜽0, 𝜏1)
2

≤
∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖) − ∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖) + 𝔼𝝉𝑖1

[∇𝝓∇�̂�
𝑖 𝐽In

(
𝝓, �̂�

𝑖
, 𝝉𝑖1

)
]

− 𝔼𝝉𝑖1
[∇𝝓∇�̂�

𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)] + ∇𝝓∇�̂�
𝑖 𝐽In (𝝓, �̂� 𝑖 , 𝝉𝑖1)

2

≤3𝑐2
1 + 3

(
(Δ̂𝐽 )2 + (�̂�𝐽 )2

)
(59)

∇𝝓∇𝜽0𝐽In (𝝓, 𝜽0, 𝝉𝑖1)
2 ≤ 3𝑐2

1 + 3
(
(Δ̂𝐽 )2 + (�̂�𝐽 )2

)
(60)
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Part (III)  𝐾−1∏
𝑗=𝑖+1

𝔼𝝉
𝑗

2
[𝐼 + 𝛼∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)]
2

≤
𝐾−1∏
𝑗=𝑖+1

𝐼 − 𝛼∇2
�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 ) + 𝛼∇2
�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 ) − 𝛼𝔼𝝉
𝑗

2
[∇2

�̂�
𝑗 𝐽

In (𝝓, �̂� 𝑗 , 𝝉 𝑗2)]
2

≤
(
(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2

)𝐾−𝑖−1

(61)

𝔼𝝉0:𝐾−1
0

[
𝕍

[
∇𝝓𝐽

K (𝝓) | 𝝉0:𝐾−1
0

] ]
≤𝔼𝝉0:𝐾−1

0

[
2(𝜎1)2 + 2𝐾𝛼2

𝐾−1∑︁
𝑖=0

[(
2𝑚2

2 + 2𝜎2
2

)
×

(
3𝑐2

1 + 3
(
(Δ̂𝐽 )2 + (�̂�𝐽 )2

) )
×

6𝐾−𝑖−1
[ (

(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2 + 𝛼2 (�̂�𝐻 )2
)𝐾−𝑖−1

−
(
(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2

)𝐾−𝑖−1
]
+

(𝜎2)2
(
(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2

)𝐾−𝑖−1
×

(
3𝑐2

1 + 3
(
(Δ̂𝐽 )2 + (�̂�𝐽 )2

) )
+

𝑚2
2

(
(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2

)𝐾−𝑖−1
× (�̂�𝐽 )2 | 𝝉0:𝐾−1

0

]
≤2(𝜎1)2

+ (6𝐾𝛼2𝜎2
2 )

( (
(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2

)𝐾−1
− 1

) (
𝑐2

1 + (Δ̂𝐽 )2 + (�̂�𝐽 )2
)

+ (2𝐾𝛼2𝑚2
2)

( (
(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2

)𝐾−1
− 1

)
(�̂�𝐽 )2

+ 2𝛼2 (𝑚2
1 + 3𝜎2

2 )
(
𝑐2

1 + (Δ̂𝐽 )2 + (�̂�𝐽 )2
)

+ (6𝐾𝐾𝛼2 (12𝑚2
2 + 12𝜎2

2 ))
(
𝑐2

1 + (Δ̂𝐽 )2 + (�̂�𝐽 )2
)
×( (

(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2 + 𝛼2 (�̂�𝐻 )2
)𝐾−1

−
(
(1 + 𝛼𝑐2)2 + 𝛼2 (Δ̂𝐻 )2

)𝐾−1
)

(62)

Then combine terms (i)-(ii) together, that is

𝕍
[
∇𝝓𝐽

K (𝝓)
]

≤O
(
(𝑉1 + Δ̂2

𝐻 )𝐾−1
(
𝔼[‖�̂�𝐾 − 𝜽𝐾 ‖2] + (𝐾 − 1)

)
+

(
𝑉2 + (𝑉1 + Δ̂2

𝐻 + �̂�2
𝐻 )𝐾−1 − (𝑉1 + Δ̂2

𝐻 )𝐾−1
)
(Δ̂2
𝐽 + �̂�2

𝐽 )
) (63)

which concludes the proof of Theorem 4.5. �

H Supporting Lemmas

In this section, we present the supporting lemmas.
Definition H.1. Let 𝑋 be a random vector in ℝ𝑑 . Then the norm of 𝑋 is

‖𝑋 ‖ :=
√︄∑︁

𝑖

𝑋2
𝑖

(64)
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Lemma H.2. Let 𝑋 be a random vector in ℝ𝑑 with finite second moment, where 𝔼[‖𝑋 ‖2] ≤ +∞.
Then ‖𝔼[𝑋] ‖ ≤ 𝔼[‖𝑋 ‖], ‖𝔼[𝑋] ‖2 ≤ 𝔼[‖𝑋 ‖2].

Proof. Due to the convexity of norm operator, we can have ‖𝔼[𝑋] ‖ ≤ 𝔼[‖𝑋 ‖] using Jensen’s
inequality. Further we can get ‖𝔼[𝑋] ‖2 ≤ (𝔼[‖𝑋 ‖2])2 ≤ 𝔼[‖𝑋 ‖2] and the statement follows. �

Lemma H.3. Let 𝑋 and 𝑌 be two random variables in ℝ𝑑 with finite second moment. Then
𝔼[‖𝑋 + 𝑌 ‖] ≤ 𝔼[‖𝑋 ‖] + 𝔼[‖𝑌 ‖].

Proof. According to Minkowski’s inequality that (𝔼[‖𝑋 + 𝑌 ‖ 𝑝])1/𝑝 ≤ (𝔼[‖𝑋 ‖ 𝑝])1/𝑝 +
(𝔼[‖𝑌 ‖ 𝑝])1/𝑝 , set 𝑝 = 1 and the statement follows. �

Definition H.4. Let 𝑋 be a random vector with values in ℝ𝑑 . Then the variance of 𝑋 is

𝕍[𝑋] := 𝔼[‖𝑋 − 𝔼[𝑋] ‖2] (65)

Lemma H.5 (Properties of the variance). Let 𝑋 and 𝑌 be two independent random variables in ℝ𝑑 .
We also assume that 𝑋,𝑌 , have finite second moment. Then the following hold.

(i) 𝕍[𝑋] = 𝔼[‖𝑋 ‖2] − ‖𝔼[𝑋] ‖2,

(ii) For every 𝑥 ∈ ℝ𝑑 , 𝔼[‖𝑋 − 𝑥‖2] = 𝕍[𝑋] + ‖𝔼[𝑋] − 𝑥‖2. Hence, 𝕍[𝑋] = min𝑥∈ℝ𝑑 𝔼[‖𝑋 −
𝑥‖2],

(iii) 𝕍[𝑋 + 𝑌 ] = 𝕍[𝑋] +𝕍[𝑌 ].

Proof. (i)-(ii): Let 𝑥 ∈ ℝ𝑑 . Then, ‖𝑋−𝑥‖2 = ‖𝑋−𝔼[𝑋] ‖2+‖𝔼[𝑋]−𝑥‖2+2(𝑋−𝔼[𝑋])> (𝔼[𝑋]−𝑥).
Hence, taking the expectation we get 𝔼[‖𝑋−𝑥‖2] = 𝕍[𝑋] + ‖𝔼[𝑋] −𝑥‖2. Therefore, 𝔼[‖𝑋−𝑥‖2] ≥
𝕍[𝑋] and for 𝑥 = 𝔼[𝑋] we get 𝔼[‖𝑋 − 𝑥‖2] = 𝕍[𝑋]. Finally, for 𝑥 = 0 we get (i).

(iii): Let �̄� := 𝔼[𝑋] and 𝑌 := 𝔼[𝑌 ], we have

𝕍[𝑋 + 𝑌 ] = 𝔼[‖𝑋 − �̄� + 𝑌 − 𝑌 ‖2]
= 𝔼[‖𝑋 − �̄� ‖2] + 𝔼[‖𝑌 − 𝑌 ‖2] + 2𝔼[𝑋 − �̄�]>𝔼[𝑌 − 𝑌 ]
= 𝔼[‖𝑋 − �̄� ‖2] + 𝔼[‖𝑌 − 𝑌 ‖2]

Recalling the definition of 𝕍[𝑋] the statement follows. �

Definition H.6. (Conditional Variance). Let 𝑋 be a random variable with values in ℝ𝑑 and 𝑌 be a
random variable with values in a measurable space Y. We call conditional variance of 𝑋 given 𝑌 the
quantity

𝕍[𝑋 | 𝑌 ] := 𝔼[‖𝑋 − 𝔼[𝑋 | 𝑌 ] ‖2 | 𝑌 ] .
Lemma H.7. (Law of total variance) Let 𝑋 and 𝑌 be two random variables, we can prove that

𝕍[𝑋] = 𝔼[𝕍[𝑋 | 𝑌 ]] +𝕍[𝔼[𝑋 | 𝑌 ]] (66)

Proof.

𝕍[𝑋] = 𝔼[‖𝑋 − 𝔼[𝑋] ‖2]
= 𝔼[‖𝑋 ‖2] − ‖𝔼[𝑋] ‖2

= 𝔼[𝔼[‖𝑋 ‖2 | 𝑌 ]] − ‖𝔼[𝔼[𝑋 | 𝑌 ]] ‖2

= 𝔼[𝕍[𝑋 | 𝑌 ] + ‖𝔼[𝑋 | 𝑌 ] ‖2] − ‖𝔼[𝔼[𝑋 | 𝑌 ]] ‖2

= 𝔼[𝕍[𝑋 | 𝑌 ]] +
(
𝔼[‖𝔼[𝑋 | 𝑌 ] ‖2] − ‖𝔼[𝔼[𝑋 | 𝑌 ]] ‖2

)
recognizing that the term inside the parenthesis is the conditional variance of 𝔼[𝑋 |𝑌 ] gives the
result. �

Lemma H.8. Let 𝜁 and 𝜂 be two independent random variables with values in Z and Y respectively.
Let 𝜓 : Y → ℝ𝑚×𝑛, 𝜙 : Z → ℝ𝑛×𝑝 , and 𝜑 : Y → ℝ𝑝×𝑞 matrix-valued measurable functions. Then

𝔼[𝜓(𝜂) (𝜙(𝜁) − 𝔼[𝜙(𝜁)])𝜑(𝜂)] = 0 (67)
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Proof. Since, for every 𝑦 ∈ Y, 𝐵 ↦→ 𝜓(𝑦)𝐵𝜑(𝑦) is linear and 𝜁 and 𝜂 are independent, we have

𝔼[𝜓(𝜂) (𝜓(𝜁) − 𝔼[𝜓(𝜁)])𝜑(𝜂) |𝜂] = 𝜓(𝜂)𝔼
[
𝜙(𝜁) − 𝔼[𝜙(𝜁)]

]
𝜑(𝜂) = 0.

Taking the expectation the statement follows. �

I Experiment

Computational resources. For compute resources, We used one internal compute servers which
consists consisting of 2𝑥 Tesla A100 cards and 256 CPUs, however each model is trained on at most
1 card.

I.1 Tabular MDP

I.1.1 Experimental Settings

We adopt the tabular random MDP setting presented in [33]. The dimension is 20 for state space
and 5 for action space, so we have the reward matrix 𝑅 ∈ ℝ20×5. The transition probability matrix
is generated from independent Dirichlet distributions. The policy is a matrix 𝜃0 ∈ ℝ20×5. The
final policy 𝜋𝜃 is obtained by adopting Softmax activation on this policy matrix: 𝜋𝜃 (𝑎 | 𝑠) =

exp(𝜃 (𝑠, 𝑎))/∑𝑏 exp(𝜃 (𝑠, 𝑏)). We set the initial policy as the uniform policy (by setting 𝜃0 as zero
matrix) in MAML and LIRPG experiment. We conduct the inner-loop update stating from the same
point for several times when estimating the meta-gradient correlation and variance. For accuracy
measurement between estimation 𝑥 ∈ ℝ𝐿 and ground truth 𝑦 ∈ ℝ𝐿 , we use the following equation:

Acc(𝑥, 𝑦) :=
𝑥𝑇 𝑦

√
𝑥𝑇 𝑥

√︁
𝑦𝑇 𝑦

. (68)

I.1.2 Implementation for decomposing Gradient estimation

To decompose the gradient estimation effects brought by different sources, such as outer estimation
variance and inner estimation bias (compositional bias, hessian estimation error), we utilise the
following implementation trick: Using estimator I to estimate 𝜃 ′𝑐 = 𝜃 + 𝛼∇𝐽 (𝜃), estimator II to
estimate 𝜃 ′

ℎ
= 𝜃 + 𝛼∇𝐽 (𝜃) and finally combine them with: 𝜃 ′ =⊥ 𝜃 ′𝑐 + 𝜃 ′ℎ− ⊥ 𝜃 ′

ℎ
, where ⊥ is the

"stop gradient" operator. By this implementation trick, we can have the following property: 𝜃 ′ → 𝜃 ′𝑐
and ∇𝜃𝜃 ′ = ∇𝜃𝜃 ′ℎ, where → is the "evaluates to" operator. "Evaluates to" operator → is in contrast
with =, which also brings the equality of gradients. By "Evaluates to" operator, the "stop gradient"
operator means that ⊥ ( 𝑓𝜃 (𝑥)) → 𝑓𝜃 (𝑥) but ∇𝜃 ⊥ ( 𝑓𝜃 (𝑥)) → 0. This property guarantee that the
compositional bias is only influenced by estimator I while hessian estimation error is controlled by
estimator II. Besides estimator I and estimator II, an extra estimator III is used for outer-loop policy
gradient ∇𝜃𝑘 𝐽out (𝜋𝑘 ) estimation, which helps us understand the effect of outer-loop policy gradient.

I.1.3 Additional Experimental Results on Tabular MAML-RL

We offer additional experimental results on more estimators (DiCE/ Loaded-DiCE)/settings (All 7
permutations)/metrics (variance of Meta-gradient estimation).

Ablation study on sample size and estimator. Additional experimental results are shown in Fig. 5.
The comparison between 𝑆𝑆𝑆, 𝑆𝐸𝑆, 𝐸𝑆𝑆 and 𝑆𝑆𝐸, 𝑆𝐸𝐸, 𝐸𝑆𝐸 reveals the importance of the outer-
loop gradient estimation. Accurate outer-loop policy gradient estimation brings more significant
improvement over the correlation compared with the correction of Hessian error or compositional
bias. In addition, with estimated outer-loop policy gradient, the correction of these two terms also
helps (𝐸𝐸𝑆 > 𝑆𝐸𝑆 > 𝐸𝑆𝑆 > 𝑆𝑆𝑆).

Next we discuss the comparison between different estimators. The DiCE estimator have real high
variance on first-order and second-order, and its first-order gradient corresponds to the REINFORCE
algorithm [38] while the rest 3 estimators’ first-order gradient corresponds to the Actor-critic algo-
rithm. That is why DiCE performs the worst in all cases. With stochastic outer-loop estimation,
the LVC and Loaded-DiCE estimator have comparable correlation while the variance of LVC is
smaller than Loaded-DiCE. The AD estimator performs worse than LVC and Loaded-DiCE when
the Hessian is estimated (SSE, ESE, SSS, ESS). This corresponds to the conclusion in [29] that
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the LVC estimator introduces low-bias and low-variance Hessian estimation while AD estimator
has large-bias and low-varaince Hessian estimation. With exact outer-loop estimation, the LVC
has relatively great Hessian estimation so the correction of compositional bias has the same effect
with Hessian correction (𝐸𝑆𝐸 = 𝑆𝐸𝐸 > 𝑆𝑆𝐸), while the Hessian correction is still important in
Loaded-DiCE (𝑆𝐸𝐸 > 𝐸𝑆𝐸 > 𝑆𝑆𝐸).

Ablation study on inner learning rate, step and estimator. Additional ablation study on inner
learning rate and number of steps are shown in Fig. 6, 7. The results show that: With more steps
and larger learning rates, the inner-loop estimation can become more important than outer-loop
policy gradient (the correlation decreases a lot in 𝑆𝑆𝐸 in all estimators). Also in multi-step and
large learning rate setting, the importance of Hessian estimation and compositional bias become
comparable in LVC and Loaded-DiCE (𝑆𝐸𝐸 ≈ 𝐸𝑆𝐸, 𝑆𝐸𝑆 ≈ 𝐸𝑆𝑆).

Meta-gradient variance In all three plots Fig. 5, 6, 7, we report additional metric on variance of
the meta-gradient estimation. We observe that the correction of compositional bias increases the
variance especially when outer-loop policy gradient estimator is poor (estimator III uses stochastic
samples) or Hessian variance is large (in DiCE and Loaded-DiCE). Only with low Hessian variance
(LVC/AD) and great outer-loop policy gradient (estimator III uses analytical solution), the correction
of compositional bias can decrease the variance.
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Figure 5: Ablation study on sample size and estimator in 1-step inner-loop setting. (1) Outer-loop
policy gradient is important for estimation (2) Compositional bias correction helps increase the
correlation (3) The LVC and Loaded-DiCE can achieve higher correlation compared with AD when
the Hessian matrix is estimated.

I.1.4 Additional Experimental Results on Tabular LIRPG

In Fig. 8 we offer additional experimental Results on estimation variance. Basically the AD based
estimation in LIRPG setting tend to have higher variance.

I.1.5 Hyperparameters

We offer the hyperparameter settings for our Tabular MDP experiment in Table 2.
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Figure 6: Ablation study on inner learning rate and estimator. (1) In Loaded-DiCE and LVC,
With larger learning rate, the compositional bias basically shares the same importance with Hessian
estimation error. (2) With larger learning rate, the Hessian estimation problem in AD largely decreases
the correlation.
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Figure 7: Ablation study on inner step and estimator. Results of larger steps show similar phenomenon
with larger inner-loop learning rate.
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Figure 8: Additional experiment results on. Different color refers to different trajectory sample size.

Table 2: Hyper-parameter settings for Tabular MDP.

SETTINGS VALUE DESCRIPTION

TRAJECTORY LENGTH 20 RL TRAJECOTRY LENGTH
DISCOUNT FACTOR 0.8 LEARNING RATE FOR META-SOLVER UPDATES
INNER LEARNING RATE 10 LEARNING RATE FOR INNER-LOOP UPDATE
INNER STEP 1 STEP NUMBER OF INNER-UPDATE
INDEPENDENT TRIALS 10 NUMBER OF INDEPENDENT TRIALS ON ENVIRONMENTS
SAME TRIALS 20 NUMBER OF INDEPENDENT TRIALS ON THE SAME POINT
DIMENSION OF STATE 20 DIMENSION OF STATE
DIMENSION OF ACTION 5 DIMENSION OF ACTION
NOISE COEFFICIENT 1.0 NOISE FACTOR FOR SIMULATING ESTIMATED VALUE FUNCTION
DENSITY 0.001 PARAMETERS OF DIRICHILET DISTRIBUTION

I.2 LOLA-DiCE on Iterated Prisoner Dilemma (IPD)

I.2.1 Experimental Settings

In Iterated Prisoner Dilemma, the Prisoner Dilemma game is played repeatedly by the same players.
The payoffs of Prisoner Dilemma for players are shown as follows.

R1 =

[
−2 0
−3 −1

]
R2 =

[
−2 −3
0 −1

]
,

where the action 0 (correpsonds to column/row 0) as "cooperation" (don’t confess) and the action 1
(correpsonds to column/row 1) as "defection" (confess). Agent in Iterated Prisoner Dilemma aims at
maximising the cumulative Discounted reward. By LOLA-DiCE algorithm, it is possible for both
agent to reach social welfare: (-1, -1). Refer to Appendix A.2 for how the algorithm is formulated.

We conduct our experiment by adapting code from the official codebase*. The official code only
conducts the experiment using one fixed seed and the performance is highly sensitive to different
random seeds using default hyperparameters. To evaluate the performance reliably, we conduct all
the experiments for 10 random seeds and report the average result.
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Figure 9: Experiment result of LOLA-DiCE. (a) Poor inner-loop estimation can fail the LOLA-DiCE
algorithm. (b) Hessian estimation variance is the main problem in LOLA-DiCE. (c) The correction
of compositional bias also helps increase the average return. (d) The off-policy correction can both
decrease the compositional bias and Hessian estimation variance, which largely increases the final
return.

I.2.2 Additional Experimental Results

Ablation on LOLA-DiCE inner/outer estimation. We report the correlation result of conducting
ablation study for different inner/outer-loop estimation of LOLA-DiCE in the Fig. 9(a). Higher
correlation does not guarantee higher return. The bonus brought by setting inner-loop as exact solution
have a really large improvement over correlation (from 0.7 to 1.0) but have limited improvement
on return. We believe it is because the outer-loop gradient estimation becomes the main issue when
inner-loop estimation is really well.

Ablation on LOLA-DiCE Hessian variance and compositional bias. We show additional experi-
mental result in Fig. 9(c). An interesting thing is that we find out the gradient correlation of these
three settings are comparable. An possible explanation is that the main issue here is the hessian
variance and this is why the performance gain by lowering hessian variance is larger that lowering
compositional bias. Though by correcting compositional bias LOLA can have better estimation with
performance gain, the gain is not obvious in the aspect of gradient correlation because the hessian
variance is still large.

Off-policy DiCE and ablation study The correlation gain for off-policy comp&on-policy hessian is
still limited like that in Fig. 9(c). But the performance gain verifies the bonus brought by correcting
compositional bias.

I.2.3 Hyperparameters

We offer the hyperparameter settings for our LOLA experiment in Table 3.

*https://github.com/alexis-jacq/LOLA_DiCE
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Table 3: Hyper-parameter settings for LOLA-DiCE.

SETTINGS VALUE DESCRIPTION

OUTER LEARNING RATE 0.1 OUTER LEARNING RATE
INNER LEARNING RATE 0.3 INNER LEARNING RATE
DISCOUNT FACTOR 0.96 DISCOUNT FACTOR
UPDATE 500 STEP NUMBER OF META-UPDATE
ROLLOUT LENGTH 100 LENGTH OF IPD ROLLOUT
INNER STEP 1 NUMBER OF VIRTUAL INNER-STEP LOOK-AHEAD
VALUE FUNCTION LEARNING RATE 0.1 VALUE FUNCTION LEARNING RATE
OFF-POLICY BUFFER SIZE 1024 BUFFER SIZE
SAMPLE BATCH SIZE 128 COMP/HESSIAN/OUTER SAMPLE BATCH SIZE

I.3 MGRL on Atari games

I.3.1 Experimental setting

We reimplement the MGRL algorithm based on A2C baseline. In this case, Meta-parameters 𝜙
involves 4 hyperparameters: Discount factor, value loss coefficient, entropy loss coefficient and
GAE ratio. The procedures of ’discard’ strategy we use is summarized as follows: Starting from the
inner-policy parameters 𝜃0, we utilise take 3 A2C updates and get the 3-step updated policy 𝜃3. Then
we can calculate the meta-gradient by backpropogating from 𝑅(𝜃3) to the meta parameters. Finally
we reset the inner-loop policy parameters back to 𝜃1 so the rest 2 updates are in fact virtual update. It
is only used for the meta-gradient estimation.

I.3.2 Discussion on the ’Discard’ strategy

In the MGRL experiment, we follow previous work [4] for conducting multi-step MGRL. So the
inner-loop policy will take multi-step virtual updates for meta-parameters update. As mentioned in
Section 4.2 in their paper, this strategy can only keep the RL update times unchanged among different
algorithms and is not particularly sample efficient because they need to take virtual look-ahead for
the update of meta-parameters. However, one benefit of adopting such strategy is that we can keep
the amount of meta-update large enough to verify the effect brought by the LVC correction. We also
take some experiments on another setting where we take meta-update after each 3-step inner-loop
update. Note that they are no longer virtual inner-loop updates. However, we find out that in many
environment this setting largely decrease the meta-update times and make the comparison of different
meta-gradient estimation less meaningful.

I.3.3 Additional Experimental results

We offer the full experiments results on all 8 Atari games: Asteroids, Qbert, Tennis, BeamRider,
Alien, Assault, DoubleDunk, Seaquest. The reward performance is shown in Fig. 10. We also
offer trajectories for all 4 meta-parameters on these experiments in Fig. 11. From Fig. 10 it can
show that MGRL with LVC correction can achieve comparable or better performance in almost all 8
environments. Note that we need to clarify that in some RL experiments the MGRL cannot achieve
better performance compared with A2C baseline. This also corresponds to the experimental results
in original MGRL paper [39]. However, since our main comparison only happens between MGRL
and MGRL with LVC correction, it is still a fair comparison to verify the effectiveness of LVC
hessian correction. Fig. 11 reveals that even we have only 4 meta-parameters, different meta-gradient
estimation can still results in large gap between the meta optimisation trajectory and final GMRL
performance.

I.3.4 Implementations and hyperparameters

We adopt the codebase of A2C from [21] and differentiable optimization library [28] to implement
MGRL algorithms. We use a shared CNN network (3 Conv layers and one fully connected (FC)
layer) for the policy network and critic network. The (out-channel, filters, stride) for each Conv layer
is (32, 8 × 8, 4), (64, 4 × 4, 2) and (64, 3 × 3, 1) respectively while the hidden size is 512 for the
FC layer. For the training loss, we adopt additional entropy regularisation for policy loss and Mean
Square Error (MSE) for the value loss. We adopt the Generalized Advantage estimation (GAE) for
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Figure 10: Experimental results on Atari game over 5 seeds. 3-step MGRL with LVC correction can
achieve at least the same performance compared with 3-step MGRL in basically all environments.

advantage estimation. We offer the hyperparameter settings for our experiment in Table 4. We tun our
algorithm for 125k inner updates, which corresponds to 40M environment steps for baseline A2C.

Table 4: Hyper-parameter settings for MGRL.

SETTINGS VALUE DESCRIPTION

INNER LEARNING RATE 7E-4 INNER LEARNING RATE
LEARNING RATE SCHEDULING LINEAR DECAY LINEARLY DECREASE TO 0
DISCOUNT FACTOR 0.99 DISCOUNT FACTOR
GAE LAMBDA 0.95 RATIO OF GENERALIZED ADVANTAGE ESTIMATION
VALUE COEF 0.5 COEFFICIENT OF VALUE LOSS
ENTROPY COEF 0.01 COEFFICIENT OF ENTROPY LOSS
UPDATE 125K NUMBER OF INNER UPDATE
NUMBER OF PROCESS 64 NUMBER OF MULTI PROCESS
NUMBER OF STEP PER UPDATE 5 NUMBER OF STEP PER UPDATE
META UPDATE 3 NUMBER OF INNER-UPDATE FOR CONDUCTING META-UPDATE
META LEARNING RATE 0.001 META LEARNING RATE
INNER OPTIMIZER ADAM INNER-LOOP OPTIMIZER
OUTER OPTIMIZER ADAM OUTER-LOOP OPTIMIZER
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Figure 11: 4 Meta parameters trajectories on Atari game for 3-step MGRL and 3-step MGRL with
LVC correction.
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