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Abstract. Large-scale Bundle Adjustment (BA) requires massive mem-
ory and computation resources which are difficult to be fulfilled by ex-
isting BA libraries. In this paper, we propose MegBA, a GPU-based
distributed BA library. MegBA can provide massive aggregated mem-
ory by automatically partitioning large BA problems, and assigning the
solvers of sub-problems to parallel nodes. The parallel solvers adopt dis-
tributed Precondition Conjugate Gradient and distributed Schur Elim-
ination, so that an effective solution, which can match the precision of
those computed by a single node, can be efficiently computed. To accel-
erate BA computation, we implement end-to-end BA computation using
high-performance primitives available on commodity GPUs. MegBA ex-
poses easy-to-use APIs that are compatible with existing popular BA
libraries. Experiments show that MegBA can significantly outperform
state-of-the-art BA libraries: Ceres (41.45×), RootBA (64.576×) and
DeepLM (6.769×) in several large-scale BA benchmarks. The code of
MegBA is available at: https://github.com/MegviiRobot/MegBA.

1 Introduction

Bundle Adjustment (BA) is the foundation for many real-world 3D vision appli-
cations [20, 32], including structure-from-motion and simultaneous-localization-
and-mapping. A BA problem minimises the re-projection error between camera
poses and map points. The error is a non-linear square function, and it is min-
imised through iterative methods, such as Gauss-Newton (GN) [35], Leverberg-
Marquardt (LM) [26] and Dog-Leg [30]. In each iteration, a BA library differ-
entiates the errors with respect to solving states and constructs a linear system
which is solved by optimisation algorithms, such as Cholesky decomposition [4]
and Precondition Conjugate Gradient (PCG) [9].

Large-scale BA is increasingly important given the recent rise of city-level
high-definition maps for autonomous driving [3, 21, 22, 24] and indoor maps for
augmentation reality [29, 34, 39]. A structure-from-motion application, for ex-
ample, can produce massive images [2, 15], resulting in billions of points and
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observations to be adjusted. Such a BA problem is orders of magnitude larger
than those in conventional vision applications [33,40].

Existing BA libraries (e.g., g2o [12] and Ceres [1]) however provide insuffi-
cient support for large-scale BA.We observe several reasons: (i) Existing libraries
focus on single-node execution, and they lack algorithms to distribute computa-
tion. They thus cannot provide massive aggregated memory that is the key for
large-scale BA. Even though there are algorithms, such as RPBA [27], DPBA [6]
and STBA [40], which explore distributed BA. These algorithms adopt approxi-
mation which can adversely affect the precision of found solutions. (ii) Existing
BA libraries are designed for CPU architectures, and they under-utilise GPUs
which is particularly useful for large-scale BA. Even though there are systems,
such as PBA [37], to accelerate BA with GPUs. They leave key BA opera-
tions un-accelerated (e.g., error differentiation and linear system construction).
DeepLM [16] offloads error differentiation into GPUs through PyTorch, but the
performance is often sub-optimised.

In this paper, we propose MegBA, a novel GPU-optimised distributed library
for large-scale BA. The design of MegBA makes several contributions:

(1) Distributed BA algorithms. MegBA provides a large amount of aggre-
gated memory by distributing BA computation to multiple nodes. To this end,
we propose a generic BA problem partitioning method. This method leverages
a key observation in BA problems: BA problems are often expressed as graphs
where nodes represent points/cameras, and edges represent the associations be-
tween cameras and points. MegBA can thus automatically partition the graphs
based on edges, and ensure each sub-graph has an equal number of edges (with
an aim of achieving load balancing). MegBA further assigns sub-graphs to dis-
tributed nodes and merges the local solutions to sub-graphs. To ensure that
distributed BA can offer the precision as those computed by single-node BA
libraries, we propose the distributed PCG algorithm and the distributed Schur
elimination algorithm. These two algorithms synchronise the states of solvers on
parallel nodes, and the synchronisation is realised using NCCL.

(2) GPU-Optimised BA computation. MegBA thoroughly optimise BA
computation for GPUs, thus providing massive computation power for large-scale
BA. Computation-intensive operators (e.g., inverse, inner project, etc) are im-
plemented as Single-Instruction-Multiple-Data (SIMD) operators. MegBA store
data in JetVector, a data structure that stores BA data in SIMD-friendly vectors,
and JetVector minimises data serialisation cost between CPUs and GPUs. To
minimise data movement cost which could block GPU execution, MegBA has
algorithms that can predict the GPU memory usage of BA, thus pre-fetching
BA data if possible. It exposes easy-to-use APIs that are compatible with g2o
and Ceres. Ceres and g2o applications can be thus easily ported to MegBA.

We evaluate the performance of MegBA on servers and each server has 8
NVIDIA V100 GPUs. Experiments with public large BA datasets (i.e., Final-
13682 [2]) show that MegBA can out-perform Ceres by up to 41.45×, and
RootBA [7] by up to 64.576×, indicating the benefits of optimising BA compu-
tation for GPUs. We further compare MegBA with DeepLM [16], a GPU-based
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BA library. MegBA out-performs DeepLM by 5.213× on 4 GPUs. With 8 GPUs,
MegBA out-performs DeepLM by 6.769×, making MegBA the state-of-the-art
BA library on GPUs.

To evaluate the scalability of MegBA, we construct an extremely large syn-
thetic BA dataset which is modelled after by the BA problems we have in real-
world applications. This dataset contains 80 million observations, 2.76× larger
than Final-13682. DeepLM and RootBA incur out-of-memory error and cannot
handle such a dataset. On the contrary, MegBA can solve this BA problem in
216.26 seconds by distributing BA computation to 8 GPUs, which is 23.54×
faster than Ceres.

2 Related Work

This section describes the related work of MegBA. g2o [12] and Ceres [1] are
exact BA libraries that can compute high-accuracy solutions to BA problems.
These libraries are designed for using parallel CPU cores, and they cannot use
GPUs. These libraries also fail to provide distributed execution, which makes
them suffer from out-of-memory issues in solving large-scale BA problems.

Approximated BA algorithms can substantially speed up BA, though
often come with a compromise in the quality of BA solutions. PBA [37] is limited
to run on a single device.

√
BA [8] replaced Schur Complement with a memory-

efficient nullspace projection of Jacobian, thus improving its performance with
single-precision float numbers. iSAM [18] and iSAM2 [17] exploit states ordering;
while ICE-BA [23] exploits the states in temporal orders. Though fast in speed,
approximated BA algorithms modify the original BA problems, which adversely
affect the quality of BA solutions. As a result, commercial 3D vision software,
such as PIX4D1 usually avoid any form of approximation and adopt exact BA
libraries if possible.

Distributed BA libraries have been recently designed for large-scale BA.
Anders Eriksson et al. [10] present consensus-based optimisation which leverages
proximal splitting. Runze Zhang et al. [38] purpose an Alternating Direction
Method of Multipliers to distribute the optimisation problem. Later RPBA [27],
DPBA [6], STBA [40] partition the BA problems based on ADMM. These
ADMM-based systems incur massive redundant computation on distributed de-
vices, making them sometimes under-perform single-node libraries. Further, their
users must manually partition BA problems, resulting in sub-optimal distributed
performance. BA-Net [31] and DeepLM [16] leverages GPUs to speed up BA.
They however rely on PyTorch to use GPU, which incurs non-trivial performance
overheads when using GPU and extra memory copies. Decentralised SLAM li-
braries, such as DEDV-SLAM [5], often solve approximated BA problems on
distributed robots, then they merge local solutions. However, the merged solu-
tion is not equivalent to the original global BA problem.

Custom hardware and algorithms are useful in accelerating BA [14].
GBP [28] uses a neural processing unit (i.e., GraphCore IPU) to speed up BA;

1https://www.pix4d.com/
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Fig. 1: MegBA overview. 1 MegBA partitions a BA problem based on edges.
BA sub-problems are in the same size, and they are dispatched to distributed
GPUs. Each GPU computes Jacobians 2 , constructs a linear system 3 , and
solve the linear system using the the distributed PCG algorithm 4 . The com-
munication involved in linear system construction and distributed PCG is im-
plemented using allreduce operations. Step 2 , 3 , and 4 are executed iteratively
until 5 convergence criteria has been met.

but the limited availability of IPU makes GBP difficult to be used as a general
solution. Practitioners also propose an approximated BA solver tailored for facial
capture [11], and this solver cannot be used for arbitrary BA problems such as
structure-from-motion.

3 Preliminaries

This section introduces the preliminaries of MegBA. A BA problem can be ex-
pressed as a graph, and its solving is realised an iterative process which minimises
a non-linear square error objective function:

x∗ = argmin
x

∑
e⊤i,jΣi,jei,j , (1)

where ei,j is the constraint (i.e. error or graph edge) between state (i.e. param-
eters or graph nodes) xi and xj , Σi,j is an information matrix.

Solving Equation 1 is equivalent to iteratively updating the incremental
amount ∆x, given by the linear system H∆x = g, upon the current state
x until convergence. The Hessian matrix H = JTΣJ for GN method and
H = JTΣJ + λI for LM method, the residual vector g equals to −JTΣr,
J is the Jacobian of the error e with respect to current state x.

To solve BA problems, BA libraries can use Schur Complement (SC):[
B E

ET C

] [
∆xc

∆xp

]
=

[
v
w

]
(2)
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where B and C are block diagonal and they are related to camera-camera and
point-point edges, respectively. E refers to edges between camera and point. v
and w refer to the residual vectors for camera and point states.

Solving H∆x = g is equivalent to compute the incremental update for states
related to cameras ∆xc by solving an alternative linear system, called Reduced
Camera System (RCS)

[B −EC−1ET ]∆xc = v −EC−1w, (3)

and followed by a substitution ∆xc into

∆xp = C−1
(
w −ET∆xc

)
, (4)

to get the update for 3D map points.
BA libraries solve linear systems using either direct methods or iterative

methods. Direct methods, such as Gaussian-Elimination, LU, QR, and Cholesky
Decomposition, return optimised solution of x in one pass. They however suffer
from O(n3) time and O(n2) space complexity, making them only suitable for
small-scale BA problems. On the contrary, iterative methods, such as PCG [32],
are suitable for large-scale BA problems. Specifically, PCG replaces the explicit
computation of EC−1ET with multiple iterative sparse matrix-vector opera-
tions. It reduces the space complexity to O(n), thus saving memory.

4 MegBA Design

This section introduces the design of MegBA. A key design goal of MegBA is to
transparently distribute the solving of a given BA problem to multiple nodes,
thus addressing the memory wall of a single node.

Figure 1 presents an overview of the distributed execution of MegBA. A
MegBA user declares a BA problem as a graph. MegBA can automatically par-
tition the BA problem based on edges with an aim of each BA sub-problem to
have an even number of edges 1 . Specifically, each GPU first 2 computes the
Jacobian (i.e. differentiation of the edge for the node), and then 3 construct the
linear system, and finally, 4 apply PCG to compute the update for adjusting the
current BA sub-problem. The PCG intermediate state is synchronised so that
MegBA can eventually solve the shared global BA problem. The BA update
step is iteratively performed until a user-defined convergence criterion is met 5 .
Notably, the BA computation on each GPU is implemented as SIMD operations
which can best utilise GPUs (The details of SIMD-friendly data structure and
the memory-efficient runtime are given in Section 5)

4.1 Edge-Based Partitioning Method

We focus on partitioning the Hessian matrix produced in BA. For example, in
a BA dataset with 80M edges, a Hessian matrix H consume over 50G memory,
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leading to over 99.9% storage to be allocated to E and ET . We want to have
a generic method that partitions the Hessian matrix in a BA problem. This
method needs to assign each parallel device with a part of the matrix E and
ET , preferably in equal sizes. The partitioning needs to guarantee that the global
solution merged from local solutions is equivalent to the one computed using a
single node. This equivalence property is the key to ensuring a high-precision
solution found by MegBA.

At the high level, MegBA achieves distributed BA using two major compo-
nents: (i) a method that can divide a BA problem into sub-problems, and (ii) an
algorithm that can coordinate distributed PCG algorithms to solve sub-problems
in parallel. Our partitioning method is based on a key observation in BA prob-
lems: the non-zero blocks in E and ET are corresponding with edges, i.e., the
i-th row j-th column non-zero block in E is computed by ei,j , we can partition
edges based on the number of available GPUs, and each GPU only store part
of these non-zero blocks (We provide an example to illustrate the partitioning
process in the supplementary materials).

Assume there are K GPUs, given a BA problem, we tile edges to a vector
e = [. . . ei,j . . . ]

T , then we partition it to several blocks e = [eT1 eT2 . . . eTK ]T .
The Jacobian J could be partitioned into several blocks:

J =
de

dx
=

[
de1

dx

T de2

dx

T
. . . deK

dx

T
]T

=
[
JT

1 JT
2 . . . JT

K

]T
. (5)

Assuming identity information matrix is given here, Hessian H can be par-
titioned:

H = JTJ =

K∑
k=1

JT
k Jk =

K∑
k=1

Hk. (6)

To perform Schur elimination, we represented Hk as sub-blocks:

Hk =

[
Bk Ek

ET
k Ck

]
. (7)

Matrix blocks in Equation 2 have the following equivalent forms in the edge-
based partition setting: B =

∑K
k=1 Bk, E =

∑K
k=1 Ek, E

T =
∑K

k=1 E
T
k , and

C =
∑K

k=1 Ck. The number of non-zero parameter blocks in E or ET equals the
number of edges. Notably, the sub-matrices Bk and Ck have the same number
of non-zero elements as B and C, respectively. Since we store matrices in the
Compressed Sparse Row (CSR) format, each GPU only stores 1

K non-zero blocks

in E and ET . The blocking strategy greatly alleviates the problem that E and
ET are too large to be stored on a single device.

By applying the above partition method for Equation 2, an equivalent dis-
tributed version can be formulated as follow:

g = −JTr = −[JT
1 JT

2 . . .JT
K ][rT1 rT2 . . . rTK ]T = −

K∑
k=1

JT
k r. (8)
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Algorithm 1 Distributed BA

Input: BA initial state x = [xT
c xT

p ]T , vector of edges ek, and local GPU rank k
Output: Optimised state x
1: while BA Convergence Criteria not satisfied do
2: rk = ek(x),Jk = dek(x)/dx /* Residual and Jacobian */

3:

[
Bk Ek

ET
k Ck

]
= JT

k Jk, [vk wk ] = −JT
k rk /* Hessian and Constant vector */

4: B = allreduce(Bk), C = allreduce(Ck),
v = allreduce(vk), w = allreduce(wk)

/* B =
∑K

i=1 Bi, C =
∑K

i=1 Ci, v =
∑K

i=1 vi, w =
∑K

i=1 wi */
5: αk = EkC

−1w
6: α = allreduce(αk) /*

∑K
i=1 αi */

7: g = v −α /* Constant vector in Equation 3 */
8: ∆xc = DPCG(0,B,Ek,E

T
k ,C, g, k) /* Update xc using Algorithm 2 */

9: βk = ET
k ∆xc

10: β = allreduce(βk) /*
∑K

i=1 βi */
11: ∆xp = C−1(w − β) /* Increment of xp */
12: xc = xc +∆xc, xp = xp +∆xp /* Update state */
13: end while
14: return x = [xT

c xT
p ]T

4.2 Distributed BA Algorithm

By far we have partitioned a BA problem and assigned sub-problems to all
GPUs. In the following, we will discuss how does MegBA coordinates the solving
of sub-problems in a distributed manner.

Algorithm 1 introduces the overall distributed BA algorithm in MegBA. The
distributed BA algorithm takes as initial state and partitioned edges as described
in Section 4.1. We use JecVector to compute the Jacobian and residual (Line 2).
JetVector is a novel data structure to represent BA data in a SIMD format, it
can make full use of the hardware characteristics of GPU (e.g. coalesced memory
loading) to do auto-differentiation over millions of edges in parallel. We give a
more detailed illustration in Section 5.1. Then we build a linear system (Line 3).
We perform allreduce [25] on diagonal-blocks and constant vector (Line 4) before
solving the linear system because the size of diagonal-blocks and constant vector
is small and they would be used several times in the following procedures.

We then compute constant vector in Equation 3 (Line 5-7) and solve the
linear system by using a Distributed PCG (DPCG) algorithm (Line 8). Notably,
we do necessary allreduce in the DPCG algorithm to guarantee DPCG output the
same result as non-distributed PCG solver does in solving Equation 3, further
implementation details will be shown in Section 4.3. After solving the linear
system in Equation 3, we compute the increment of xp following Equation 4
(Line 9-11). Once we have computed the increment ∆xc and ∆xp, we update
the state xc and xp (Line 12). If it doesn’t satisfy the convergence criteria we
will start another loop; otherwise, we will return the optimised state x.
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Algorithm 2 Distributed PCG (DPCG)

Input: Initial state x0, matrix block B, Ek, E
T
k , C of Hk, constant vector b, and

local GPU rank k
Output: Solution x for linear system [B − EC−1ET ]x = b, where E =

∑K
i=1 Ei

and ET =
∑K

i=1 Ei

1: r0 = b− DSE(x0,B,Ek,E
T
k ,C

−1, k) /* Algorithm 3 */
2: n = 0
3: while Convergence Criteria not satisfied do
4: zn = B−1rn

5: ρn = rnTzn

6: if n > 1 then
7: βn = ρn/ρn−1

8: pn = zn + βnpn

9: else
10: pn = zn

11: end if
12: qn = DSE(pn,B,Ek,E

T
k ,C

−1, k) /* Algorithm 3 */
13: αn = ρn/pnTqn

14: xn+1 = xn + αnpn

15: rn+1 = rn − αnqn−1

16: n = n+ 1
17: end while
18: return xn

Algorithm 3 Distributed Schur Elimination (DSE)

Input: Vector x, matrix B,Ek,E
T
k ,C

−1, and local GPU rank k
Output: Schur elimination result [B − EC−1E]x, where E =

∑K
i=1 Ei,E

T =∑K
i=1 E

T
i

1: ak = ET
k x

2: a = allreduce(ak) /*
∑K

i=1 ai */
3: b = C−1a
4: ck = Ekb
5: c = allreduce(ck) /*

∑K
i=1 ci */

6: d = Bx
7: return d− c

4.3 Distributed PCG

We then discuss how to distribute the PCG algorithm in BA, shown in Algo-
rithm 1. This algorithm first constructs a linear system defined in Equation 2. It
then solves Equation 3 and computes increment following Equation 4. It finally
uses the increments update state x, and tested if a convergence criterion has
been met. To guarantee that the distributed BA algorithm achieves the conver-
gence performance, we make Algorithm 1, named DPCG, return the same result
as the non-distributed linear solver.
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In the following, we describe the execution of DPCG. DPCG takes BA initial
state x0, matrix block B, Ek, E

T
k , C of Hk, constant vector b as input and

output solution x for linear system [B−EC−1ET ]x = b, where E =
∑K

k=1 Ek

and ET =
∑K

k=1 Ek. The procedures of DPCG using Schur elimination is sim-
ilar to single-node PCG. Notably, the coefficient matrix of the linear system
to be solved is Schur complement. The matrix-vector multiplication operations
(Line 1, 12 in Algorithm 2) is thus the multiplication between Schur complement
and vector. The difference between distributed compared with non-distributed
setting is that DPCG only assign Ek and ET

k rather than the complete matrices
E and ET to GPU k, so we need to guarantee operations that use Ek and ET

k

have the same output compared with using E and ET , these operations happen
when doing Schur elimination (Line 1, 12).

Our key idea of computing Schur elimination in a distributed manner is that:
the summation of matrix-vector multiplication is the same as the the result ma-
trix summation multiplies vector, i.e.,

∑K
k=1(Ekv) =

∑K
k=1(Ek)v. We compute

an intermediate vector (Line 1) and reduce it (Line 2), then we compute interme-
diate vectors sequentially (Line 3, 4). We perform all-reduce operation over the
intermediate vector (Line 5) and compute another intermediate vector (Line 6.
After those procedures, we do subtraction to the last two intermediate vectors
and output the final result. The result would be the same as computing the
complete Schur complement [B −EC−1E] then multiplying it with vector x.

4.4 Complexity Analysis

In the end, we present the complexity analysis of MegBA. Assume that MegBA
is given m cameras, n points, and k observations and we often have k ≫ m,n,
the time complexity for building the linear system is O(m+n+ k) and the time
complexity for each iteration of the conjugate gradient is O(m+n+ k). Assume
we distribute the problem to K GPUs, on each GPU, the time complexity for
building the linear system is O(m + n + k/K) and the time complexity for
each iteration of the conjugate gradient is O(m+ n+ k/K). The ring all-reduce
communication time complexity of each conjugate gradient iteration is O(m+n).
In summary, the total complexity of MegBA is O(m+ n+ k/K).

5 MegBA Implementation

This section describes the implementation of MegBA. There are several goals
of our implementation: (i) We want to use as many SIMD operations as possi-
ble because both computation and memory operations on GPU are essentially
SIMD-friendly. (ii) We want to optimise the memory efficiency of MegBA, thus
avoiding memory allocation and deallocation; (iii) We want to implement the
APIs of MegBA that are fully compatible with existing popular BA libraries:
g2o and Ceres. In the following, we highlight how MegBA achieves these imple-
mentation goals.
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5.1 SIMD-Friendly Data Structures

JetVector is a novel data structure to perform auto-differentiation over millions
of edges. Compared to conventional BA data structure: Jet implemented in
Ceres, JetVector represents a list of Jets (i.e., Array-of-Structure) as a single
data object where Jet’s data fields: data and grad across all items are represented
as single arrays (i.e., Array-within-Structure). When we perform mathematical
operations on JetVector, we will start as many GPU threads as the elements in
it, every GPU thread process one element. Because data and grad are stored in
the structure of Array-within-Structure, the memory transactions are coalesced
and make it easy to reach a high memory throughput. The detailed structure
layout of JecVector could be found in supplementary materials.

Besides JetVector, other parts of MegBA are also implemented as SIMD-
friendly data structures. The construction of linear system (Line 3 in Algo-
rithm 1) uses L1 cache on GPU to store Jacobian blocks in a SIMD manner.
The DPCG algorithm includes a lot of matrix/vector operations which also be
benefited from the SIMD structure. A full list of SIMD operations implemented
in MegBA can be found in supplementary materials.

5.2 Memory-Efficient Runtime

BA computation involves massive objects to be allocated in GPU memory. To
avoid expensive memory allocation [19], we leverage a key observation in BA
computation: The automatic differentiation works on GPU buffers that are in
the same size across BA iterations. By monitoring the sizes of GPU buffers used
in the forward pass of differentiating the BA errors, we can predict the sizes of all
memory buffers involved in future BA iterations. Based on this observation, we
can pre-allocate these memory buffers in a memory pool, thus avoiding calling
the CUDA driver to allocate memory during runtime.

5.3 Easy-to-use APIs

The APIs of MegBA comprises of two major components:
(i) Declaring BA problems. Following the API convention of g2o and Ceres,
a BA problem in MegBA is declared a graph that contains nodes and edges.
The MegBA nodes describe the 3D coordinates or the poses of cameras and
these nodes can be directly imported from g2o and Ceres applications. The
MegBA edges are error functions that can be written using the Eigen library [13],
identical to Ceres. A MegBA user can build a large BA problem by adding BA
nodes and edges (using the g2o-equivalent addEdge and addNode functions).
(ii) Choosing BA solvers. MegBA also support users to choose solvers given
the characteristics of their BA problems. The default solver is the SIMD-optimised
DPCG which can automatically use multiple GPUs. Given a small-scale BA
problem where intrinsic parallelism is not sufficient, MegBA provides users with
the CPU-optimised CHOLMOD solver [4].
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6 Experimental Evaluation

Benchmark Dataset #Points #Observations

BAL Trafalgar-257 65132 225911
Ladybug-1723 156502 678718
Dubrovnik-356 226730 1255268
Venice-1778 993923 5001946
Final-13682 4456117 28987644

Synthesised Synthesised-20000 80000 80000000

1DSfM Alamo-577 140080 816891
Ellis Island-233 9210 20500
Gendarmenmarkt-704 76964 268747
Madrid Metropolis-347 44479 195660
Montreal Notre Dame-459 151876 811757
Notre Dame-548 224153 1172145
NYC Library-334 54757 211614
Piazza del Popolo-336 29731 150161
Piccadilly-2292 184475 798085
Roman Forum-1067 223844 1031760
Tower of London-484 126648 596690
Trafalgar-5052 327920 1266102
Union Square-816 26430 90668
Vienna Cathedral-846 154394 495940
Yorkminster-429 100426 376980

Table 1: Dataset Statistics.

We conduct a comprehensive evaluation with MegBA. The evaluation com-
prises of BAL [2], 1DSfM [36], and a large synthetic dataset modelled after a
city-scale BA application we have in production. The dataset statistic is shown
in Table 1. Due to the page limit, this section only presents the results with
BAL [2], and we put the results of 1DSfM and the synthetic dataset in the
supplementary materials.

We compare MegBA with four baselines: (i) Ceres [1] (version 2.0) is the most
popular BA library that can efficiently use massive CPU cores, (ii) g2o [12] is a
lightweight CPU-based BA library, (iii) RootBA [7] is a recent CPU-based BA
library that uses Nullspace-Marginalization in place of Schur Complement, and
(iv) DeepLM [16] is the state-of-the-art GPU-based BA library (2021), and it
was shown to out-perform other popular BA libraries: STBA [40] and PBA [37]
(We provide comparison results between PBA and MegBA in the supplementary
materials).

We run experiments on a server that has 80 Intel Xeon 2.5GHz CPU cores,
8 Nvidia V100 GPUs and 320GB memory. The GPUs are inter-connected using
NVLink 2.0. We use 64-bit floating points (FP64) unless otherwise specified.
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Fig. 2: Mean Squared Error over Time. MegBA-X-Y refers to X GPUs
while -a refers to auto-differentiation Jacobian and -m refers to analytical dif-
ferentiation Jacobian. Ceres/RootBA/g2o-X refers to X CPU threads.

Trafalgar-257 Ladybug-1723 Dubrovnik-356

MSE Time Mem MSE Time Mem MSE Time Mem

Ceres-16 0.434 8.160 1.659 0.562 34.50 2.093 0.393 116.0 2.550

DeepLM 0.434 3.820 1.445 0.573 3.930 2.144 0.396 6.119 2.693

g2o-16 0.434 21.69 1.358 1.961 140.7 1.866 0.394 94.39 2.308

RootBA-16 0.433 3.307 1.468 0.562 7.050 2.423 0.393 78.16 3.942

MegBA-1-a 0.438 1.364 1.270 0.560 0.932 2.450 0.411 3.640 3.940

MegBA-1-m 0.438 1.148 1.010 0.560 0.774 1.660 0.411 3.263 2.480

Table 2: Small-scale experiments We only report the results of MegBA with a
GPU because the datasets in this table are small. MSE is the final Mean Squared
Error (pixels), Time is BA duration, and Mem is the memory in GB.

6.1 Overall Performance

We first evaluate the overall performance of MegBA, Ceres, g2o, RootBA, and
DeepLM. MegBA uses from 1 to 8 GPUs, and CPU-based algorithms use 16
threads. We measure the Mean Squared Error (MSE) in pixels over time.

Figure 2 shows the evaluation results. In the Venice-1778 dataset (Figure 2(a)),
MegBA achieves the best performance with 8 GPUs, while DeepLM can only use
a single GPU. MegBA completes with 3.34 seconds while Ceres, RootBA, g2o
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Venice-1778 Final-13682

MSE Time Mem MSE Time Mem

Ceres-16 0.334 319.0 5.983 0.749 916.0 26.08

DeepLM 0.333 24.44 6.256 0.751 149.6 14.89

g2o-16 0.335 890.6 5.999 1.061 13161 36.89

RootBA-16 0.337 73.94 14.14 0.773 1,427 263.2

MegBA-1-a 0.333 11.96 13.68 OOM OOM OOM

MegBA-2-a 0.333 7.133 14.51 OOM OOM OOM

MegBA-4-a 0.333 4.767 16.76 0.748 28.70 81.03

MegBA-8-a 0.333 3.340 22.61 0.748 22.10 89.74

MegBA-1-m 0.333 10.92 7.870 OOM OOM OOM

MegBA-2-m 0.333 6.618 8.693 0.748 50.57 43.60

MegBA-4-m 0.333 4.617 10.95 0.748 26.46 47.33

MegBA-8-m 0.333 3.014 16.79 0.748 20.68 56.06

Table 3: Large-scale experiments.

uses 319.0, 73.94, and 890.6 seconds, respectively. It shows the substantial speed-
up (95.5×, 22.1×, and 266.6×), which indicates the benefits of fully exploiting
GPUs to accelerate BA computation. For GPU-based BA libraries, MegBA can
complete with 11.96 seconds while DeepLM spent 24.44 seconds, showing the
effectiveness of implementing full vectorisation for BA on a single GPU. With
more GPUs, MegBA out-performs DeepLM by 7.316×, which reflects the neces-
sity of adopting multiple GPUs.

Thanks to the vectorisation and distributed BA designs, MegBA becomes
the state-of-the-art in the large BA dataset (i.e., Final-13682). As shown in Fig-
ure 2(b), MegBA completes in 22.10 seconds, while DeepLM uses 149.6 seconds
(6.769× speed-up), Ceres uses 916 seconds (41.45× speed-up), g2o uses 13161
seconds (595.5× speed-up), and RootBA uses 1427 seconds (64.57× speed-up).
In other datasets (Figure 2(c)-(e)), we observe similar speed-up achieved by
MegBA, indicating the general effectiveness of our proposed approaches. We
omit the discussion of these datasets, and their results are reported in Table 2.

6.2 Scalability

Table 3 further provides the detailed experimental results to show the scalability
of MegBA, Ceres and DeepLM. In the Venice-1778 dataset, MegBA can consis-
tently improve its performance by adding GPUs (from 11.96 seconds to 3.34
seconds if we increase the number of GPUs from 1 to 8). In addition, the large
dataset (Final-13682) can better show the scalability of MegBA. By increasing
the number of GPUs from 4 to 8, the time can be reduced to 22.10 seconds.

6.3 Floating point precision

The accuracy of solving a BA problem is sensitive to the choice of floating point
precision (i.e., 32-bit vs. 64-bit floating points). We further evaluate MegBA in
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Venice-1778 Final-13682

MSE Time Mem MSE Time Mem

MegBA-1-a(FP32) 0.334 2.620 8.300 OOM OOM OOM

MegBA-1-a(FP64) 0.333 11.96 13.68 OOM OOM OOM

MegBA-1-m(FP32) 0.333 2.065 4.821 0.750 11.82 24.51

MegBA-1-m(FP64) 0.333 10.92 7.870 OOM OOM OOM

MegBA-2-a(FP32) 0.333 1.903 8.447 0.750 11.04 42.48

MegBA-2-a(FP64) 0.333 7.133 14.51 OOM OOM OOM

MegBA-2-m(FP32) 0.333 1.353 5.541 0.750 5.133 25.63

MegBA-2-m(FP64) 0.333 6.618 8.693 0.748 50.57 43.60

MegBA-4-a(FP32) 0.333 1.680 10.50 0.749 4.804 45.28

MegBA-4-a(FP64) 0.333 4.767 16.76 0.748 28.70 81.03

MegBA-4-m(FP32) 0.334 1.274 7.598 0.748 4.279 28.43

MegBA-4-m(FP64) 0.333 4.617 10.95 0.748 26.46 47.33

MegBA-8-a(FP32) 0.334 1.622 16.02 0.748 8.973 52.15

MegBA-8-a(FP64) 0.333 3.340 22.60 0.748 22.10 89.74

MegBA-8-m(FP32) 0.333 1.271 12.99 0.747 7.582 35.31

MegBA-8-m(FP64) 0.333 3.014 16.79 0.748 20.68 56.06

Table 4: Performance with 32-bit and 64-bit floating points.

all datasets with 32-bit and 64-bit floating points, and we report the results of
Venice-1778 and Final-13682 in Table 4. Other datasets show consistent results
and we omit them here. In the dataset of Final-13682, with 4 GPUs, MegBA
(FP32) can complete in 4.804 seconds and MegBA (FP64) can complete in 28.70
seconds, while both of them are reaching the same MSE. This shows the exact-
ness of the distributed BA algorithm in MegBA. Even with lower precision,
MegBA can reach the same MSE as double-precision; but offering 5.97× speed
up, making MegBA (FP32) be the state-of-the-art in Final-13682.

7 Conclusion

We present MegBA, a novel GPU-based distributed BA library. MegBA has a set
of algorithms that enables automatically distributing BA computation to parallel
GPUs. It has a group of SIMD-optimised data structures, and a memory-efficient
runtime, making MegBA capable of fully utilising a GPU. MegBA has high-
level and compatible APIs, making it quickly become a popular open-sourced
BA library. Experimental results show that MegBA can out-perform SOTA BA
libraries by orders of magnitudes in several large-scale BA benchmarks.
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