Efficient Reinforcement Learning Development with RLzoo

Zihan Ding Tianyang Yu Yanhua Huang
Imperial College London Nanchang University Xiaohongshu Technology Co.
Hongming Zhang Guo Li Quancheng Guo
Peking University Imperial College London University of Edinburgh
Luo Mai Hao Dong
University of Edinburgh Peking University

ABSTRACT

Many multimedia developers are exploring for adopting Deep Re-
inforcement Learning (DRL) techniques in their applications. They
however often find such an adoption challenging. Existing DRL
libraries provide poor support for prototyping DRL agents (i.e.,
models), customising the agents, and comparing the performance
of DRL agents. As a result, the developers often report low efficiency
in developing DRL agents. In this paper, we introduce RLzoo, a new
DRL library that aims to make the development of DRL agents effi-
cient. RLzoo provides developers with (i) high-level yet flexible APIs
for prototyping DRL agents, and further customising the agents for
best performance, (ii) a model zoo where users can import a wide
range of DRL agents and easily compare their performance, and
(iil) an algorithm that can automatically construct DRL agents with
custom components (which are critical to improve agent’s perfor-
mance in custom applications). Evaluation results show that RLzoo
can effectively reduce the development cost of DRL agents, while
achieving comparable performance with existing DRL libraries.
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1 INTRODUCTION

Deep reinforcement learning (DRL) has recently become an effec-
tive approach to improve the performance of multimedia applica-
tions, e.g., gaming [20], self-driving cars [2], language and vision
classification [22], and complex optimisation [16]. To adopt DRL
techniques, developers often need to construct DRL agents. These
agents interact with training environments, e.g., OpenAl Gym [3],
RLbench [13], to collect training samples. Samples are sent to DRL
algorithms which learn policies, e.g., on-policy algorithms [24, 25]
and off-policy algorithms [20], that can maximise agent’s perfor-
mance, i.e., rewards, in interacting with the environments.
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Developing a DRL agent that can tackle a real-world application
is however challenging. There are several phases that are particu-
larly time-consuming in developing a DRL agent: (i) Prototyping
phase. A DRL agent contains various components (i.e., environ-
ments, DRL algorithms, and training drivers). To create a DRL agent,
developers have to spend tremendous time in importing external
training environments, modifying the environments to make them
compatible with downstream DRL algorithms, and writing training
drivers that can iteratively train the agents and distribute the train-
ing onto heterogeneous processors [17]. (ii) Customisation phase.
The default configuration (e.g., neural network architecture) of a
DRL algorithm often exhibit sub-optimal performance [13, 16, 22].
Developers thus must customise the DRL algorithm to improve
its performance. (iii) Algorithm comparison phase. In tackling a
training environment, there are often multiple DRL algorithms
available [11, 20, 24, 25]. Developers usually need to implement all
these algorithms and compare their performance.

Even though several DRL libraries have become available re-
cently, developers still find it inefficient in using these libraries to
construct DRL agents for custom applications. On the one hand,
tutorial-oriented DRL libraries, such as OpenAl Baselines [6], Stable
Baselines and Coach [4], provide command-line-based interfaces
and they focus on reproducing classical benchmarks. They do not
have low-level APIs which are necessary to control how a DRL
agent is being trained, and how it is customised. On the other
hand, research-oriented DRL libraries, such as Tianshou [14], keras-
rl [23], and Tensorforce [15], provide flexible APIs (e.g., defining the
reward functions or policy networks), useful for defining custom
DRL agents. They, however, fail to provide expressive high-level
APIs to help prototype DRL agents, and access commonly used DRL
agents.

In this paper, we introduce RLzoo, a DRL library that can enable
developers to efficiently prototype, train and evaluate DRL agents.
The design of RLzoo makes several contributions:

(i) High-level yet flexible APIs for declaring DRL agents. RLzoo
contains high-level APIs for prototyping DRL agents. These APIs
contain expressive functions for importing external training environ-
ments, declaring DRL algorithms, and launching training drivers
which can iteratively train the policies and scale the training to
distributed nodes.

Yet, RLzoo’s APIs do not compromise flexibility. They contain
flexible functions which allow DRL agents to take custom agent
components, e.g., providing a custom neural network for a DRL
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algorithm or providing a custom communication topology for dis-
tributed DRL agents. By consolidating both the high-level and low-
level APIs, RLzoo is effective in facilitating both the prototyping
phase and the customisation phase in developing DRL agents.

(ii) DRL model zoo. RLzoo provides a DRL model zoo to further
facilitate the algorithm comparison phase in developing DRL agents.
The model zoo contains many useful pre-defined DRL environments
and algorithms. Generally, these algorithms can be classified into
those for tutorial purposes (i.e., beginners) and those for research
purposes (i.e., professionals). In particular, RLzoo puts a focus on
offering support for distributed DRL algorithms [8, 11] and robot-
learning-related environments, e.g., RLBench [13].

Further, the RLzoo model zoo contains an easy-to-use agent
training notebook. RLzoo users can track the performance (e.g.,
reward) and configuration (e.g., hyper-parameters) of DRL agents,
and evaluate different DRL agents in an intuitive manner.

(iii) Automatic algorithm for constructing DRL agents. RLzoo
minimises developer’s effort for integrating custom components
into DRL agents, or re-configuring the agents for new scenarios.
This is achieved by a novel algorithm that can automatically con-
struct DRL agents with various custom components. Specifically,
this algorithm has adaptors for connecting the components (e.g., en-
vironments and DRL algorithms) in DRL agents. The adaptors can
automatically infer the input/output shapes of agent components.
As long as changes in these components are detected, the adaptors
can automatically re-configure the DRL agent, which avoids the
need for developers to make manual modification as in existing
DRL libraries.

RLzoo is implemented as a Python library based on Tensor-
Flow [1], TensorLayer [7] and KungFu [19]. It is open-sourced on
Github! in December, 2019. It has attracted numerous users from
both education and industry. RLzoo has also been used for imple-
menting demonstrations in a multi-lingual DRL textbook 2.

2 RLZOO DESIGN

In this section, we present the design of RLzoo. We first describe
the APIs in RLzoo, and then the design of RLzoo model zoo. We
will introduce the algorithm for automatically constructing DRL
agents, and end this section with presenting the generic system
architecture of distributed DRL training in RLzoo.

2.1 High-level yet Flexible APIs

The API design of RLzoo has the following goals: (i) We want to
enable users to use high-level expressive functions in declaring a
DRL agent with custom training environments, DRL algorithms and
training drivers; (if) We want to support users to flexibly customise
their DRL agents by plugging different custom objects into DRL
implementations.

We introduce the RLzoo APIs using a sample program as shown
in Listing 1. To declare a DRL agent, RLzoo users first need to
choose an environment (i,e., Pendulum-v@) (line 3~5). Based on
the chosen environment, users further decide a DRL algorithm:
TD3 (line 6). In order to train this DRL agent, the users obtain its
default construction parameters (line 7). The algorithm parameters
(alg_params) are used for constructing a DRL agent (line 8). This
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from rlzoo .common.env_wrappers import build_env

from rlzoo .common.utils import call_default_params

env_type = ' classic_control '

env_name = Pendulum—v0'

env = build_env(env_name, env_type) # Build environment

from rlzoo . algorithms import TD3 # Choose algorithm

alg_params, learn_params = call_default_params (env,
env_type, 'TD3') # Create configuration

agent = TD3(x+alg_params) # Construct agent

agent.learn (env, 'train', sxlearn_params) # Launch training

Listing 1: Sample RLzoo program

agent then launches its training process (line 9) given the environ-
ment and hyper-parameters (Learn_params). As we can see in this
program, a DRL agent can be declared with 3 abstracted steps (9
lines of code).

RLzoo allows users to flexibly customise DRL agents. To cus-

tomise a DRL agent, RLzoo users can use the call_default_params().

This function returns an agent’s configuration and training hyper-
parameters as two custom dictionaries. To provide a custom neural
network, users can access the default neural networks through the
key ‘net_list’ in alg_params dictionary. They can replace the
default networks with new custom networks. In the same manner,
RLzoo users can plug in many custom objects, e.g., optimisers, and
hyper-parameters like learning rate and batch size, into DRL agents.

2.2 Model Zoo

RLzoo further provides users with a model zoo to import pre-defined
DRL agents and evaluate the performance of DRL agents:

Pre-defined DRL algorithms. There are numerous DRL algo-
rithms available in RLzoo. Specifically, there are (i) classical DRL
algorithms, such as the deep Q-network and its variants in the dis-
crete action spaces, as well as (ii) advanced DRL algorithms, such
as hindsight experience replay, deep deterministic policy gradient,
twin delayed deep deterministic policy gradient, soft actor-critic,
advantage actor-critic, asynchronous advantage actor-critic, proxi-
mal policy optimisation, distributed proximal policy optimisation,
trust region policy optimisation. All these algorithms come with
default effective hyper-parameters that help to reproduce SOTA
results reported in their papers.

Supported training environments. There are also numerous
training environments available in RLzoo. There are typical train-
ing environments, such as Atari, Box2d, Classic control, MuJoCo,
Robotics in OpenAl Gym, and DeepMind Control Suite. In addition,
developers can access to more up-to-date environments such as
those used for emerging realistic robot learning, e.g., RLBench [13].
These environments produce complex observations represented as
compound dictionaries, and they can be used by practitioners to
test DRL with robots.

Agent training notebook. RLzoo users can exploit a high-level
agent training notebook to manage the configurations of DRL
agents, analyse their training performance metrics This notebook
is implemented based on the Jupyter Notebook. It tracks the con-
figurations of being evaluated DRL agents and stores the agents’
traces for performance analysis. Specifically, the notebook displays
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Figure 1: Automatic construction of a DRL agent.

agent performance metrics, including agent configurations, learn-
ing status (e.g., training steps and instant rewards), and training
results (e.g., averaged rewards over time and values of loss func-
tions). Based on these metrics, developers can infer the impacts of
modification made towards the DRL agents, thus facilitating the
tuning of such agents for better performance.

2.3 Automatic Agent Construction

RLzoo provides developers with an algorithm to automatically con-
struct custom DRL agents. For those agents, users can plug various
user-defined components into existing agent implementation. There
must be an approach to automatically adapt the agent implementa-
tion based on user-defined components; otherwise, developers have
to manually modify the agents whenever a custom component is
provided, as in existing DRL libraries, making the development of
custom DRL agents tedious and expensive [18].

Figure 1 illustrates the automatic agent construction algorithm
in RLzoo. First of all, this algorithm places an observation adap-
tor between the observation from the environment and the neural
network (see @). This adaptor infers the type of observations and
produces different types of neural networks, e.g., a MLP for a vector,
the CNN for an image, and a multi-head architecture for a hybrid
dictionary. The policy adaptor is placed in between the algorithm
selection and the policy output (see @). Based on the stochastic/de-
terministic nature of the DRL algorithm, this adaptor produces
corresponding policy outputs for each selected DRL algorithm. The
action adaptor is placed in between the policy (stochastic only)
and the environment (see @): if the environment requires discrete
action, this final adaptor will produce a categorical distribution
to represent the action; if the action needs to be continuous, the
adaptor produces policy output as a diagonal Gaussian distribution.

2.4 Distributed Agent Training

DRL agents usually need to accelerate computation using parallel
heterogeneous processors. To achieve this, developers often rely
on the native multiprocess library in Python. The usage of such a
library, however, is generally limited within a single machine. To
use distributed machines, developers must use external libraries,
such as Ray [21] and Acme [12]. These libraries provide custom
Remote-Process-Communication (RPC) programming interfaces.
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Figure 2: Distributed trianing architecture of RLzoo agents.

Developers must largely modify existing DRL programs in order to
adopt these RPC libraries.

In designing RLzoo, we want to minimise developer’s efforts in
modifying existing single-node programs when scaling out DRL
agents. Our idea is to ensure RLzoo’s distributed training APIs can
follow the convention in the API design of the popular multipro-
cess library. For each key component in the multiprocess library
(e.g., queues and pipes), RLzoo provides equivalent distributed im-
plementations. Hence developers can easily replace single-node
communication components with those equivalent in RLzoo. Fur-
ther, RLzoo extends the APIs of the multiprocess library. It provides
novel collective communication APIs (e.g., all-reduce) to achieve
complex communication patterns among DRL agents [19].

Figure 2 shows the distributed architecture of RLzoo DRL agents.
In a cluster, RLzoo replicates RLzoo runtime on each machine. This
runtime launches RLzoo DRL agents as Python processes, and as-
signs CPUs and GPUs to the agents. The DRL agents communicate
data using expressive communication functions defined in the col-
lective APIs and point-to-point APIs (Figure 2):

Agent collective APIs: RLzoo agents are often assigned with dif-
ferent roles (e.g., actors, learners and inference servers as in IM-
PALA [8]). The agents in the same role can use (i) role_all_reduce to
synchronise the gradients among parallel learners, (ii) role_broadcast
to broadcast weights to parallel learners (which produce gradi-
ents to update DRL models), and (iii) role_barrier to coordinate the
synchronous execution of parallel actors (which collect training
trajectories from environments).

Agent point-to-point APIs: Developers can use (i) save and re-
quest to asynchronously push and pull weights among DRL agents,
and (ii) queue or queue_pair to exchange data among those agents,
similar to the queues in the Python multiprocess library.

3 EVALUATION

In this section, we compare RLzoo with other DRL libraries in
terms of the supported algorithms, supported environments and
their API designs. We choose the following popular libraries as base-
line: OpenAl Baselines [6], Tianshou [14], Coach [4], ReAgent [10],
garage [9], keras-rl [23], MushroomRL [5] and Tensorforce [15].

Algorithms. We first evaluate the algorithm support. As we can see

from Table 1, RLzoo supports 12 DRL algorithms, whereas Coach
supports 11 algorithms and other libraries support less than 10



Library # Algo. | #Env. Image Vector Dict. | LoC
RLzoo 12 7 v v v 4
Baselines 9 5 v v v N/A
Tianshou 8 5 v v v 15-20
Coach 11 8 v v X N/A
ReAgent 4 3 v v X 5
garage 9 6 4 v X 5-10
keras-rl 3 5 v v v 10-15
MushroomRL 9 7 v v X 5-10
Tensorforce 8 5 v v v 5-15

Table 1: Comparison of different DRL libraries.

algorithms. A key difference between RLzoo and other libraries is
its supporting distributed DRL algorithms, which makes RLzoo one
of the few libraries that supports distributed DRL algorithms such
as DPPO. This type of algorithms is increasingly critical because
practitioners have recently achieved great success of training DRL
agents using parallel learning framework [11].

Environments. We then evaluate the environment support. As
shown in Table 1, RLzoo supports 7 environments, making it among
those libraries, e.g., Coach and MushroomRL, that provide a large
collection of environments. A key feature for RLzoo is its support
for all observations types (e.g., Vector, Image, and Dictionary). The
other library: keras-rl, which can offer the same full support, only
provide 3 DRL algorithms, whereas RLzoo can support 12 DRL
algorithms. This shows the importance of achieving adaptive agent
construction in RLzoo: new observations can be automatically sup-
ported by all DRL algorithms. In addition, the full observation
support also makes RLzoo the only library, as far as we know, that
supports an important environment: RLbench. This environment
has growing popularity due to the recent booming of robot learn-
ing applications. It produces complex observations that contain
images, vectors and dictionaries, making it difficult to be supported
by existing libraries.

API expressiveness. We evaluate the API design by counting the
lines of code (LoC) for declaring DRL agents. We exclude Baselines
and Coach because they have only command-line interfaces. The
LoCs here only consider necessary code for declaring agents, ex-
cluding other lines for importing libraries or assigning values for
variables. As we can see in Table 1, RLzoo requires 4 LoCs to declare
DRL agent while the ReAgent library comes as the second, cost-
ing 5 LoCs on average. Other programmable DRL libraries require
users to write around 10 - 20 LoCs. In addition, RLzoo differentiates
with other libraries in terms of its support for customising agents.
This makes RLzoo an attractive option for robot learning users
who often need to (i) deal with RGB-D camera produced by the
learning environment: RLBench, and (ii) adopt customised network
architectures like recurrent layers.

4 CONCLUSION

This paper introduces RLzoo, a novel DRL library that makes the
development of DRL agents efficient. RLzoo provides high-level yet
flexible APIs for declaring DRL agents. These APIs are particularly
efficient in prototyping DRL agents, and scaling out the training
of agents to many nodes. RLzoo further comes with a model zoo,
enabling developers to easily evaluate different DRL algorithms. In
the future, we will consistently improve the API design of RLzoo,

e.g., providing better support for implementing emerging multi-
agent DRL algorithms. We will also add new DRL algorithms into
the model zoo, especially those targeting robot learning.
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