
KungFu: Making Training in Distributed Machine Learning Adaptive

Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos Fertakis, Andrei-Octavian Brabete, Peter Pietzuch
Imperial College London

Abstract
When using distributed machine learning (ML) systems to

train models on a cluster of worker machines, users must con-
figure a large number of parameters: hyper-parameters (e.g.
the batch size and the learning rate) affect model conver-
gence; system parameters (e.g. the number of workers and
their communication topology) impact training performance.
In current systems, adapting such parameters during train-
ing is ill-supported. Users must set system parameters at
deployment time, and provide fixed adaptation schedules for
hyper-parameters in the training program.

We describe KungFu, a distributed ML library for Tensor-
Flow that is designed to enable adaptive training. KungFu
allows users to express high-level Adaptation Policies (APs)
that describe how to change hyper- and system parameters
during training. APs take real-time monitored metrics (e.g.
signal-to-noise ratios and noise scale) as input and trigger con-
trol actions (e.g. cluster rescaling or synchronisation strategy
updates). For execution, APs are translated into monitoring
and control operators, which are embedded in the dataflow
graph. APs exploit an efficient asynchronous collective com-
munication layer, which ensures concurrency and consistency
of monitoring and adaptation operations.

1 Introduction
The popularity of machine learning (ML) in many application
domains [3,15,37,75] has led to a wide adoption of distributed
ML systems. Systems such as TensorFlow [1], PyTorch [60],
MXNet [10] and MindSpore [53] exploit data and model
parallelism [1,54,66,73] to train large ML models on clusters
of worker machines. Training is typically done using the
stochastic gradient descent (SGD) algorithm [43, 68], which
iteratively computes gradients to refine the model after each
mini-batch of training data. ML systems compile training
programs into dataflow graphs [1, 10, 30, 60], which can be
executed efficiently on GPUs and other accelerators.

When training ML models, users face the challenge of
how to set a large number of configuration parameters, which
split into two classes: hyper-parameters configure the train-

ing algorithm, such as SGD, and include the batch size [68],
learning rate [68], momentum [63] and floating point preci-
sion [24]. Since hyper-parameters relate to the training pro-
cess itself, their value affects the convergence rate and the
final accuracy of the trained model. In addition, system pa-
rameters [42, 73, 81] control the operation of the distributed
ML system, such as the number of workers, the partitioning
of the training data, and the communication topology between
workers. They impact the training performance, i.e. the time
taken for the model to reach a given target accuracy.

Today users spend a substantial fraction of time tuning
configuration parameters. Different ML models have differ-
ent structures, and thus require different hyper-parameter set-
tings [52]: the hyper-parameters for a vision model such as
ResNet [26] differ from those for a language model such as
BERT [15]. For each model, hyper-parameters such as batch
size, learning rate and weight decay must be adjusted sepa-
rately to reach a high model accuracy [52]. Approaches for
automatic hyper-parameter tuning [2,18,35,45,52] search for
the best settings offline at a high resource cost. Furthermore,
system parameters such as the number of workers affect the
resources consumed by training and their efficiency. Espe-
cially in a cloud setting, users must control resource usage to
bound costs, while achieving good training performance [52].

Recently, we have seen a growing number of propos-
als [5, 12, 16, 48, 71] that argue for parameters to be adapted
dynamically during training. For example, many models only
reach high accuracy if the learning rate is decreased as the
model converges [26, 76]; the batch size can be set dynami-
cally based on real-time gradient metrics [14, 52, 83]; and the
communication strategy between workers can be adapted to
the current training loss [72]. Similarly, system parameters
can be updated to react to changes in exploitable levels of par-
allelism and resource availability. For example, the number of
workers can be changed according to the observed resource
utilisation, thus improving the utilisation of expensive accel-
erators such as GPUs and TPUs [46]; and the best communi-
cation topology among workers can be decided based on the
available network bandwidth [56].

1

We observe that existing distributed ML systems and asso-
ciated libraries (e.g. TensorFlow’s Distribution Strategies [1],
Horovod [73] and BytePS [8]) make it difficult to support the
dynamic adaptation of configuration parameters for a number
of reasons: (i) systems do not provide built-in mechanisms for
adaptation. Users must rely on external frameworks, e.g. Au-
toScaling [58] adapts the number of machines by deploying
extra scaling agents on each worker. Such external mecha-
nisms are specialised to support only one type of adaptation.
Since they are not integrated with the training system, they
cannot take advantage of existing functionality and optimisa-
tions. In addition, (ii) the monitoring of training metrics intro-
duces high overheads. For example, an 8-GPU server training
a ResNet model produces 4 GB of gradients per second [55].
Any monitoring system (e.g. MLFlow [84]) that computes
statistical metrics (e.g. variance [78]) over this amount of data
consumes substantial compute resources and network band-
width, which impacts the performance of the training process
itself. Finally, (iii) the management of worker state with adap-
tation is challenging. In existing systems, users typically must
checkpoint and restore all state when changing configuration
parameters, which can take hundreds of seconds [58].

We describe KungFu,1 a distributed ML training library
that is designed to adapt configuration parameters at runtime.
The key idea behind KungFu is to support Adaptation Poli-
cies (APs) written by users, which change hyper- and system
parameters during training based on real-time monitored met-
rics. KungFu achieves this by making three contributions:

(1) Expressing Adaptation Policies. APs describe how con-
figuration parameters should evolve based on monitored met-
rics. They are based on a high-level programming abstraction
following the convention of existing ML frameworks, making
integration with training environments seamless.

APs are written using monitoring, communication and
adaptation functions: (i) monitoring functions compute met-
rics for gradients, model variables and worker performance;
(ii) communication functions combine locally monitored met-
rics and transfer training state while adapting parameters; and
(iii) adaptation functions update configuration parameters,
including hyper- and system parameters.

(2) Making training monitoring efficient. KungFu supports
the efficient monitoring of the training process, as needed by
APs. Monitoring function calls are translated to monitoring
operators, which are embedded in the execution dataflow
graph. This allows monitoring operators to observe local
gradients and reuse existing computation for monitoring.

Locally monitored gradients are combined to compute
globally-aggregated metrics. This is achieved by an asyn-
chronous collective communication layer, which avoids block-
ing the dataflow during monitoring. This layer uses a decen-
tralised architecture: each worker maintains a local view of the
state for collective communication and incrementally updates

1https://github.com/lsds/KungFu

the state by exchanging messages in a peer-to-peer fashion.
To maximise the performance of gradient monitoring, each
KungFu worker has its own scheduler for collective commu-
nication. The schedulers cooperate in a decentralised fashion
to exploit high-speed multi-GPU networks, e.g. as offered by
NVLink through the NCCL interface.

(3) Distributed mechanism for adapting parameters. APs
can adapt configuration parameters on distributed worker
machines. KungFu represents configuration parameters as
computational configuration operators embedded within the
dataflow graph. In each training step, these operators can alter
their output by reading configuration parameters provided
by KungFu’s asynchronous collective communication layer.
Reading the parameters from this layer is efficient because
it reuses existing data channels between the communication
layer and the dataflow.

APs can dynamically change the parameters in the commu-
nication layer, and the result is automatically reflected in the
dataflow. KungFu’s communication layer uses a distributed
parameter adaptation algorithm to protect the consistency of
changes to configuration parameters while exploiting existing
collective communication functions. These functions have
been optimised for cross-machine communication, and thus
allow adaptation to be performed with low latency.

We implement KungFu’s communication layer and adaptation
mechanisms in Go (~7k LOCs) and C++ (~3k LOCs), inde-
pendently of the ML framework. KungFu provides Python
bindings (~2k LOCs) for the Adaptation Policy interface,
which can be used with existing ML frameworks, including
TensorFlow [1], PyTorch [60] and Keras [11].

We evaluate experimentally the benefit and overhead of
KungFu’s Adaptation Policies. We show that KungFu users
can implement a policy that dynamically adapts the batch size
based on gradient noise scale, therefore significantly reducing
the training time of a ResNet model. We also explore a policy
that automatically searches for a cost-effective number of
GPUs based on monitored worker performance when training
a BERT model, reducing the cost by 20% compared to a
static deployment. On a large-scale cloud testbed, we show
that KungFu achieves negligible monitoring and adaptation
overheads. It achieves up to 98% higher training throughput
than Horovod, a state-of-the-art distributed ML system.

2 Adaptation in ML Systems
We first give background on distributed ML systems and
their configuration parameters. We then describe current ap-
proaches for adapting parameters during training, highlighting
why existing systems offer limited support for this.

2.1 Parameters in distributed ML systems

For many ML models, increasing the amount of training data
and the size of the model improves accuracy [13, 26]. When
training, ML systems therefore exploit the parallelism of mod-
ern hardware accelerators such as GPUs. Computation is typ-

2

https://github.com/lsds/KungFu

ically expressed as a dataflow graph [1], which consists of
individual operators that can be scaled out.

A supervised ML system trains a model using labelled
samples, split into training and test data. A model gradually
“learns” to predict the labels by adjusting its model weights
based on the error. It takes several passes (or epochs) over
the training data to minimise the prediction error. The test
data is used to measure the model accuracy on previously
unseen data. A key metric is test accuracy, which quantifies
the model’s ability to make predictions “in the wild”.

The model weights are refined iteratively until the model
achieves a desired test accuracy. Let w be a vector of the
weights, and `x(w) be a loss function that, given w, measures
the difference between the predicted label of a sample (x,y)
and the ground truth y. During training, an ML system tries to
find a w∗ that minimises the average loss e.g. using mini-batch
stochastic gradient descent (SGD) [6, 7, 68]. More formally,

wn+1 = wn−
γn

b ∑
x∈Bn

∇`x(wn) (1)

where γn is the learning rate in the n-th iteration of the al-
gorithm, Bn is a batch of b training samples, and ∇` is the
gradient of the loss function, averaged over the batch samples.

To scale out the training computation across multiple CPUs
or accelerators, ML systems can exploit data parallelism. In
parallel synchronous SGD (S-SGD), K parallel workers share
model replicas and compute gradients for distinct partitions of
training data locally. Local gradients are averaged to correct
the shared model:

wn+1 = wn−
γn

Kb ∑
j<K

∑
x∈Bn, j

∇`x(wn) (2)

The averaging of local gradients is usually implemented using
all-reduce operations provided by collective communication
libraries such as Horovod [73] and BytePS [8].

In a distributed ML system, the above training process is
affected by many configuration parameters. These parameters
can be placed into two groups: (i) accuracy-oriented hyper-
parameters such as the learning rate γn, the batch size |Bn|,
momentum [63] and weight decay [38]; and (ii) performance-
oriented system parameters such as the set of workers, their
communication topology for performing synchronisation [56,
72, 73] and their roles during synchronisation, e.g. acting as
primary and back-up workers to mitigate stragglers [9].

Hyper-parameters are properties that govern the training
process and thus determine its final accuracy. They include
variables that determine the model structure and how the net-
work is trained (e.g. the learning rate). Choosing appropriate
hyper-parameters plays a key role in training. For example, if
the batch size is too high, the model may quickly settle at a
local minimum and thus exhibit poor generalisation ability;
conversely, if it is too low, the model may suffer from the
noise of small batches and thus fail to converge.

System parameters affect the training throughput and thus
the time to reach a given target accuracy. They include the
configuration of workers (e.g. the number of parallel workers)
and how they synchronise (e.g. the communication topology).
Choosing appropriate system parameters is important for per-
formance. For example, if the number of workers is too large,
the system may suffer from low GPU utilisation due to com-
munication bottlenecks; if the number of workers is too low,
the training time for large models becomes prohibitively long.

2.2 Setting parameters in ML systems

Today users spend a substantial fraction of time setting config-
uration parameters [40]. They often search a large parameter
space and decide on configuration parameters following a
trial-and-error approach [26, 76]. Specifically, they empiri-
cally decide on a set of candidate values, and launch parallel
training jobs to evaluate them [40]. They then measure the
accuracy of the trained model and the system throughput, and
eliminate under-performing settings using early-stop [40] and
searching heuristics [29, 33, 41]. After that, they empirically
choose an effective setting that reaches the target accuracy
given a deadline or a resource budget.

When choosing candidate values for hyper-parameters,
users must consider the characteristics of the datasets and
models. For example, if the dataset is large (e.g. Ima-
geNet [69]), the candidate batch size can be set larger (e.g.
2048) to improve the robustness of estimated gradients. If
the dataset is small (e.g. CIFAR-10 [36]), the candidate batch
size must be small (e.g. 64) so that it results in sufficiently
many gradients to correct the model. Many large ML mod-
els (e.g. ResNet [26] and BERT [15]) have a complex loss
space. When training such models, users often need to use a
schedule of hyper-parameters (e.g. changing the learning rate
at epochs 30, 60 and 90 for ResNet) to improve the quality of
a found minima.

When choosing candidate system parameters, users con-
sider the specification of hardware and the conditions of the
network. For example, using a ring-based all-reduce topol-
ogy among workers exploits the full host network bandwidth
but it increases the depth of the topology, which adds to la-
tency [80]. Setting the topology to be a star reduces latency
but it requires larger bandwidth at the root node. In addition,
good system parameters achieve a balance between compute
and network utilisation. For example, in a cloud environment
in which bandwidth is limited, training with NVIDIA V100
GPUs should only use few workers to prevent underutilising
the expensive GPUs due to network bottlenecks; however, if
NVIDIA K80 GPUs are used, a user would typically choose
more workers to improve system throughput.

2.3 Dynamic adaptation of parameters

Recently, there has been a growing number of proposals to set
configuration parameters dynamically based on metrics of the
training process [5, 12, 16, 48, 71]. The idea is to incorporate

3

Class Practitioners Monitored metrics Adaptation action

Accuracy

OpenAI [32, 52], Google [77] Gradient noise scale Scale batch size when the noise scale increases
Kuaishou [47] Gradient signal-to-noise ratio Create online metrics for model generalisation ability
Apple [31] Gradient variance Adapt learning rate based on the gradient variance
DeepMind [4], NVIDIA [59] Gradient second-order metrics Adapt learning rate based on the second-order metrics

Performance
Microsoft [80], Uber [73] Worker communication rate Adapt worker communication topology based on rates
Google [58], Huawei [82] Worker utilisation Adapt the number of workers based on utilisation
Google [9], MIT [46] Worker processing speed Adapt the roles of workers based on straggler detection

Tab. 1: Recent proposals for the dynamic adaptation of parameters

knowledge about the training process and its progress through
gradient properties and performance metrics on-the-fly.

Gradient properties include gradient signals, noise or de-
rived signal-to-noise ratios, and they reflect the status of the
trained model and the characteristics of the local loss space.
They can be used to improve the setting of hyper-parameters,
such as batch size and learning rates. Worker performance
metrics, such as worker communication rate and processing
rate, reflect the hardware and network conditions. They can
be used to decide on the number of workers and their com-
munication topology. Using monitored metrics to choose con-
figuration parameters can significantly reduce the need for
trial-and-error approaches when searching for suitable hyper-
parameters. Instead of spending resources on a search process
offline, fewer resources are used for the continuous calibration
of configuration parameters during the learning process.

As summarised in Tab. 1, multiple proposals focus on
adapting hyper-parameters to improve model accuracy. They
often adapt critical hyper-parameters such as batch size and
learning rate based on gradient properties. Researchers from
OpenAI and Google Brain propose to monitor gradient noise
scale to predict the optimal batch size when training deep
learning models [32, 52, 77]; researchers at Kuaishou use the
gradient signal-to-noise ratio to evaluate the generalisation
ability of a model [47]; Apple automatically scales the learn-
ing rate based on gradient variance [31]; and DeepMind and
NVIDIA use approximated metrics for second-order gradi-
ents to predict the best learning rate [4, 59]. Using such prop-
erties to set hyper-parameters has become important when
training increasingly complex ML models. Users know little
of the pre-conditions of these models, and hyper-parameters
must be therefore set based on monitored properties [6].

Other proposals adapt system parameters to achieve higher
training performance, e.g. reacting to changes in the ex-
ploitable parallelism and resource availability. As shown in
Tab. 1, Microsoft and Uber propose to measure workers’ com-
munication rates, which are useful for optimising the topology
of all-reduce operations [73,79,80]; Google and Huawei mon-
itor worker utilisation to update the number of workers for
increased resource utilisation [58, 82]; and Google detects
straggling workers by analysing the distribution of worker
processing rates and adapts the roles of workers, e.g. using
backup workers to replace stragglers [9]. Using worker perfor-

mance metrics to tune system parameters is an increasingly
common practice. Many distributed ML systems are being de-
ployed in cloud [25] and heterogeneous environments [23]. In
such environments, the hardware specifications and network
conditions are hard to predict, and thus system parameters
must be adapted in the actual environment at runtime.

2.4 Open challenges

Although promising, proposals to adapt parameters are hard
to realise in current systems, such as TensorFlow [1] and
PyTorch [60]. Practitioners report three main challenges:

(1) No built-in mechanisms for adaptation. Existing dis-
tributed training libraries such as Horovod [73] provide insuf-
ficient mechanisms for adaptation. Users must rely on exter-
nal systems that provide custom monitoring and adaptation
components, which must be integrated into training systems:
AutoScaling [58] adapts the number of workers at runtime by
deploying extra scaling agents on each worker using a custom
TensorFlow version, which can be managed by the scaling
agents; Horovod Elastic [46] requires users to modify their
existing training programs so that they can be executed by a
custom elastic training runner.

In general, such external systems are specialised to support
only a single type of adaptation, usually elasticity. They are
not general adaptive training platforms with support for flexi-
ble monitoring and different types of adaptation (e.g. related
to the communication topology). The lack of unified adapta-
tion abstractions prevents adaptive training from leveraging
existing ML system mechanisms and optimisations.

(2) High monitoring overhead. The dynamic adaptation pro-
posals from Tab. 1 require fine-grained monitored metrics as
input, but monitoring is expensive: an 8-GPU server training
a ResNet model produces 4 GB of gradients per second [55],
and this is even larger for recent language models such as
BERT [15]. Shipping such an amount of gradient data from
workers to a monitoring system such as TensorBoard [1],
MLFlow [84], and Prometheus [64] consumes substantial
network bandwidth. In addition, there is the overhead of com-
puting complex statistical metrics (e.g. variance [78] or signal-
to-noise ratios [47]) from gradients. All of this may impact
the performance of the training process itself.

(3) Expensive state management under change. Workers
maintain complex state, including model variables, hyper-

4

parameters and system parameters. This state must be man-
aged carefully under adaptation: changing the number of
workers must be reflected correctly in all dependent hyper-
parameters, such as the learning rate and the data partitioning;
otherwise the training result is affected adversely. In existing
systems, users typically must checkpoint and restore all state
when changing system parameters. This prevents users from
extensively applying adaptation during training, as restoring
the state can take hundreds of seconds [58].

3 Adaptation Policies
In this section, we introduce Adaptation Policies (APs), as
supported by KungFu, which adapt configuration parameters
based on monitored metrics. We provide an overview of the
features of APs and describe the programming abstraction
given to users to develop custom APs.

3.1 Overview

Our goals for APs are as follows: (i) we want to provide an
expressive policy programming abstraction. The abstraction
should follow conventions of existing ML frameworks. Users
can thus develop their own policies with low effort. Moreover,
(ii) we want to make policies easy to integrate with existing
ML frameworks. This will allow users to choose policies
based on their training scenarios and combine multiple polices
for more advanced adaptation.

APs provide functions to help users implement custom
monitoring and adaptation logic. Policies use monitoring func-
tions to compute real-time metrics for worker performance
and gradients. Locally monitored metrics can be combined us-
ing communication functions, which cover collective (broad-
cast and all-reduce) and point-to-point (serve and request)
operations. Based on the monitored metrics, policies invoke
adaptation functions to update the hyper-parameters and sys-
tem parameters of the systems.

ML frameworks such as TensorFlow [1], Keras [11] and
MXNet [10] provide a high-level training abstraction. Users
call a generalised training method, which automatically trains
a model until certain conditions (e.g. epoch counts) have
been met. We want APs to be ported easily between ML
frameworks, and we base APs on a framework-independent
adaptation API (see Tab. 2).

To integrate this API with a framework, we observe that
frameworks often support user-defined callbacks (e.g. Hooks
in TensorFlow), which are repeatedly called during training.
Today these callbacks have limited use—they usually imple-
ment checks for finishing conditions and logging functionality.
KungFu’s adaptation API can be implemented with callbacks,
thus facilitating the integration with existing ML frameworks.

3.2 Sample AP for batch size adaptation

Next we describe a sample AP for dynamically increasing
the batch size of S-SGD training based on online gradient
noise scale (GNS) [52, 77]. The increase in batch size is
implemented by adding extra workers. This allows the policy

1 ... # Import ML framework libraries
2 import kungfu as kf
3
4 class GNSPolicy(kf.BasePolicy):
5 # Create policy state
6 def __init__(self, gns_opt):
7 self.opt = gns_opt
8 self.prev_gns = None
9 self.sync = True

10
11 # Synchronise model variables under adaptation
12 def before_epoch(self):
13 if self.sync:
14 for v in self.opt.variables():
15 v = kf.broadcast(v, 0) # Synchronise state
16 self.sync = False
17
18 # Adapt the number of workers if the GNS is growing
19 def after_epoch(self):
20 avg_gns = kf.allreduce(self.opt.gns()) / kf.size()
21 if self.prev_gns is None:
22 self.prev_gns = avg_gns
23 elif avg_gns > self.prev_gns:
24 new_size = int(kf.size() * avg_gns / self.prev_gns)
25 if new_size != kf.size():
26 kf.resize(new_size) # Scale the system
27 self.sync = True
28 self.prev_gns = avg_gns
29
30 model, data = ... # Import a model and a dataset
31 opt = SGDOptimizer(...)
32 opt = kf.OptimizerWithGNS(opt) # Embed monitoring
33 estimator = Estimator(model, opt, ...) # Create a trainer
34 policy = GNSPolicy(opt) # Instantiate the policy
35 estimator.train(data, hooks=[kf.PolicyHook([policy], ...)])

Listing 1: Sample Adaptation Policy for GNS

to increase training throughput, thus reducing completion
time.

As shown Listing 1, the GNSPolicy is defined by extend-
ing a BasePolicy class (line 4). The policy includes the
__init__ function (line 6), which defines variables that main-
tain the policy state, such as the previously observed GNS
metrics and a flag indicating if workers must synchronise
their state (lines 7–9). The policy further has user-defined
functions that trigger the adaptation logic at different times in
a training process. The before_epoch function (line 12) is
called at the start of each training epoch. Newly joined work-
ers do not have state that is consistent with existing workers.
It is thus necessary to broadcast (line 15) the model state.
The after_epoch function (line 19) computes the averaged
GNS metric at the end of each epoch using an all-reduce
operation (line 20). Based on its value, the number of work-
ers is increased by the resize function (line 26). To enable
GNS monitoring, a user wraps the original SGDOptimizer
with kf.OptimizerWithGNS (lines 31–33), which embeds
the GNS monitoring operators into the training dataflow.
The GNSPolicy is then passed to PolicyHook (line 35) to
schedule its execution during training.

3.3 Adaptation Policy interface

To define APs, users implement custom policy functions.
These functions can make API calls for communication, mon-
itoring and adaptation, which are called at different times
during the training process. There are three groups of pol-

5

Class Functions Description

Communication

broadcast(tensor, rank)→ Tensor Broadcast a tensor from a worker to all other workers
allgather(tensor)→ [Tensor] Gather tensors from all workers and distribute the combined tensor to them
allreduce(tensor)→ Tensor Aggregate tensors from all workers and distributes result back to them
keep(tensor, tag) Keep a tagged tensor which can be requested by other workers
request(rank, name, tag)→ Tensor Request a tagged tensor from a specified worker

Monitoring
comm_rates()→ Tensor Measure tensor communication rates with other workers
gns(grads, avg_grads)→ float Compute the gradient noise scale
. . . Custom gradient monitoring operators

Adaptation

rank()→ int Get the worker rank
size()→ int Get the number of workers
set_tree(tree)→ bool Set the tree of collective communication. Return True if succeed
resize(size, workers=None)→ bool Resize the cluster based on a worker list. Return True if succeed
detached()→ bool Check if the worker is detached due to resizing

Tab. 2: KungFu APIs for Adaptation Policies

icy functions: (i) the before/after_train functions are
called at the start and end of a training job, respectively;
(ii) the before/after_epoch functions are called at the start
and end of each training epoch, respectively; and (iii) the
before/after_step functions are called at the start and end
of each training step (i.e. iteration), respectively.

In these policy functions, users can call APIs for training
communication, monitoring and adaptation:

Communication. Tab. 2 lists the communication functions in
APs. ML frameworks typically use tensors as their basic data
types for gradients and model variables. To work with such
data, the communication functions take tensors as inputs. APs
need to collect monitored metrics from all workers, which can
be achieved by calling collective communication functions:
(i) the broadcast function distributes a tensor from a worker
to all other workers; (ii) the allgather function gathers ten-
sors from all workers and sends the combined tensor to all
workers; and (iii) the allreduce function aggregates tensors
from all workers and returns the results back to them.

In addition, APs must manage and communicate the state
of trained models among workers. For example, APs for
communication-efficient asynchronous training [44] or ro-
bust model averaging [85] must explicitly manage the lifecy-
cle of model states and communicate states to synchronise
diverged workers. To support state management and commu-
nication, the KungFu API provides a keep function that tags
a model that is being trained (i.e. the state) and caches it in
memory. APs can then read tagged models on other workers
asynchronously using a request method.

Monitoring. Tab. 2 lists the monitoring functions, which APs
use to monitor worker performance and gradients. APs use
a comm_rate function to measure the tensor communication
rates between a local worker and its peers. These rates are use-
ful for deciding the optimal communication topology among
workers. To monitor gradients, APs can use gns to compute
the gradient noise scale. For other statistical metrics, such
as variance, policies can use the above collective communi-

cation operators. For example, the computation of gradient
variance requires both the sum of gradients and the sum of
the square of gradients element-wise [78]; both summations
can be computed using the allreduce function.

Adaptation. Based on monitored metrics, APs call adapta-
tion functions to update configuration parameters. To update
hyper-parameters, APs use the allreduce function to com-
pute new values and assign them to hyper-parameters, rep-
resented as params. To update system parameters, APs call:
(i) set_tree to set the collective communication topology
among workers; and (ii) resize to update the number of
workers. Some workers may need to leave the training after
adaptation. APs can use the detached function to check if
a local worker is still part of the training. If not, the AP can
direct workers to exit gracefully.

3.4 Practical considerations

To support APs in real-world distributed ML systems, we
must address several practical considerations:

Imperative and symbolic execution. To balance ease-of-use
and performance, TensorFlow and PyTorch support impera-
tive (TensorFlow Eager) and symbolic (TensorFlow Auto-
Graph and PyTorch TorchScript) execution, and APs must
therefore also support both.

In TensorFlow Eager and PyTorch programs, users often
want to customise the training process. Therefore they ex-
plicitly implement the training loop and call custom training
functions (e.g. to compute gradients) imperatively in each
iteration (i.e. step). This offers great flexibility but prevents
callbacks from being used. In this case, KungFu allows the
communication, monitoring and adaptation APIs from Tab. 2
to be called directly from inside the training loop.

To support symbolic execution, each function in Tab. 2
has a symbolic version. For example, the resize function
has an equivalent symbolic version: resize_op. This allows
KungFu APIs to be embedded into symbolic training pro-
grams (e.g. tf.function).

6

Listing 1 shows the hybrid usage of the KungFu im-
perative and symbolic APIs. The OptimizerWithGNS opti-
miser (line 32) appends gns_op operators to each gradient
computation operator at compilation time of the dataflow
graph, ensuring that the monitoring operator can execute im-
mediately as long as its upstream gradient is available. The
policy functions (lines 12–19) are called imperatively. This hy-
brid usage has an important advantage: the compute-intensive
monitoring operators are embedded into the training dataflow
graph, while the inexpensive user-defined adaptation logic can
be triggered in different policy functions without re-compiling
the dataflow graph.

Policy composition. Users can compose multiple APs to
create advanced adaptive training applications (i.e. the
PolicyHook (line 35 in Listing 1) can take multiple APs as
input). For example, they can use two APs, one implementing
elastic training (denoted as AP1) and the other an adaptive
learning rate (denoted as AP2). These APs are chained as
a list, which is passed to the training program. A current
limitation is that users must decide manually on the correct in-
vocation order: assuming AP1 modifies the worker count and
AP2 uses the count to scale the learning rate, the execution
order must be AP1 followed by AP2. We leave a mechanism
for automatically determining the AP order to future work.

API restrictions. KungFu only imposes minimal API restric-
tions on AP developers, and APs can call any of the communi-
cation/monitoring/adaptation APIs in their callback functions.
The calls have global atomic semantics, and there are no con-
straints on the call order. The only exception is that if a worker
has left the cluster (checked by detached), it cannot further
invoke collective communication APIs.

Error handling. AP developers must handle errors such as
worker failures in a traditional fashion. If a KungFu API trig-
gers an internal error, the exception is exposed as a dataflow
error, as defined in existing ML frameworks, and checkpoints
can be used for recovery.

4 Supporting Monitoring in KungFu
We describe KungFu, a distributed training library that can
efficiently execute the proposed APs. APs must continuously
monitor gradients to determine online adaption decisions,
which must be done with low overhead. We begin with an
overview of KungFu’s design and then describe its support
for efficient gradient monitoring in detail.

4.1 Design overview

To support monitoring, KungFu’s design has the following
goals: (i) KungFu should minimise extra computation when
monitoring gradients, and worker resources should focus on
training the model; (ii) KungFu should not block the train-
ing when monitoring gradients using collective communi-
cation operations due to the length of such operations; and
(iii) KungFu should efficiently monitor gradients, given the

Worker 2

TensorFlow a

b

Policies

Worker 1

TensorFlow

Dataflow

Worker 0

TensorFlow

NCCL scheduler

Asynchronous collective
communication layer

NCCL scheduler

Asynchronous collective
communication layer

NCCL scheduler

Asynchronous collective
communication layer

c

d

Dataflow Dataflow

Fig. 1: KungFu architecture

large volume of gradients in today’s models.
Fig. 1 gives an overview of the KungFu architecture. Users

can declare an AP (see a) as part of a ML training program
written in TensorFlow. TensorFlow then creates a dataflow
program to train the model. To monitor gradients in this
dataflow, KungFu transforms the monitoring calls from the
AP into monitoring operators (see b), which are embedded in
the dataflow. This allows monitoring operators to (i) directly
monitor gradients produced by the dataflow and (ii) reuse in-
termediate computation results in the dataflow for monitoring.
For example, it becomes possible to exploit the existing aver-
aged gradients computed when synchronising model replicas.

The monitoring process must compute globally-aggregated
metrics from local gradients on workers. In KungFu, this
exploits regular collective communication primitives (e.g. all-
reduce and all-gather). To overlap monitoring and synchroni-
sation as much as possible, KungFu has a new asynchronous
collective communication layer (see c). Using this layer, the
dataflow executed by workers can launch asynchronous col-
lective communication operations without blocking.

The asynchronous collective communication layer also
avoids having an expensive central coordinator, as used for in-
voking synchronous collective communication operations in
existing systems, such as Horovod [73]. Instead, the KungFu
communication layer follows a decentralised architecture:
each worker maintains a local view of the complete cluster
state used for collective communication and incrementally
updates the state by exchanging messages with workers in
a peer-to-peer fashion. This decentralised design avoids the
need for APs to coordinate the order of collective communi-
cation across the system. It also prevents a central coordinator
from becoming a potential bottleneck.

To improve the performance of collective communication,
each KungFu worker has an NCCL scheduler (see d). This
allows the worker to exploit high-speed multi-GPU networks,
such as NVLink [57] and GPU RDMA, through the NCCL
interface [56]. The scheduler tracks the availability of gra-
dients on each GPU on the machine, and invokes a local
NCCL library to execute a collective communication opera-
tion for fetching gradients. To combine the results on multiple
workers across different machines, workers use KungFu’s
asynchronous collective communication layer, thus following
a hybrid architecture for collective communication.

7

g1

g2

g3

g1

g2

g3

Dataflow

Collective communication

Worker 0

datag1

control data

control data

control data

Collective

Worker 1 Worker 2 Worker 3

Named collective message

Named collective states

a Dataflow

b c

d

Collective

Dataflow

Collective

Dataflow

Ring topology

Fig. 2: Dataflow collective communication

4.2 Embedding monitoring within dataflows

To reduce the compute cost of calculating monitored metrics,
KungFu exploits the fact that modern ML frameworks (e.g.
TensorFlow, MXNet and PyTorch) have built-in dataflow en-
gines. These engines offer efficient operators for tensor com-
putation. They also handle the device placement of operators,
leveraging parallel computation on accelerators such as GPUs
and TPUs. Our observation is that a dataflow engine can also
execute monitoring operators by embedding them within the
dataflow graph for efficient execution.

To realise this design, KungFu implements the gradient
monitoring functions (e.g. gns in Tab. 2) and the collective
communication functions (e.g. allreduce, broadcast and
allgather) as dataflow operators. Since gradients are repre-
sented as tensors in the dataflow graph, KungFu’s dataflow
operators must accept tensors as input. The embedding occurs
at compilation time of the dataflow. The monitoring opera-
tors are thus part of the dataflow, and they can be scheduled
immediately by the dataflow engine when their inputs, i.e.
gradients, become available.

To embed its functions as operators, KungFu provides dis-
tributed optimisers (e.g. OptimizerWithGNS in line 32 in
Listing 1) to wrap the original gradient descent optimisers.
The KungFu optimisers automatically embed monitoring op-
erators into the training dataflows. These operators intercept
gradient tensors produced in each training iteration and for-
ward them to gradient computation operators. The results are
maintained in the dataflow and can be read subsequently by
the policy functions in APs (line 20).

4.3 Collective communication for dataflows

Dataflows that implement APs use collective communication
when computing global gradient metrics. While some gra-
dient metrics (e.g. GNS) can be fused with synchronisation
operations, others (e.g. gradient variance) cannot and require
extra rounds of collective communication. Asynchronous col-
lective communication thus allows these to be overlapped

with gradient synchronisation, reducing the overhead of gradi-
ent monitoring. In addition, since dataflows are often executed
asynchronously, the coordination with synchronous collec-
tive communication, as in Horovod, increases latency, which
asynchronous communication avoids.

Allowing dataflows to launch collective communication
asynchronously, however, can result in inconsistent computa-
tion. For example, the dataflows executed on different workers
can produce gradients in different orders. If a worker receives
the collective communication messages belonging to different
gradients, they may compute inconsistent results.

Fig. 2 illustrates this problem. The example considers
4 workers that perform collective communication. They exe-
cute the same dataflow graph (shown as a), which contains
3 operators for computing gradients, g1, g2 and g3. On dif-
ferent workers, the operators g2 and g3 can complete in a
different order. To avoid mixing the collective communica-
tion data for g2 and g3, Horovod [73] employs a centralised
coordinator. The coordinator tracks which gradients are ready
on workers and launches collective communication operators
for these in the correct order. This, however, not only reduces
concurrency in the collective communication layer but it also
makes the central coordinator a scalability bottleneck.

KungFu adopts a decentralised architecture that efficiently
and safely implements asynchronous collective communica-
tion. It comprises several components:

Named collective messages. The collective communication
layer in KungFu uses named collective messages (see b in
Fig. 2) to communicate data. The delivery of these messages
follows the collective communication topology (e.g. the ring
topology shown in c). Each named collective message carries
(i) the data and (ii) a key, which is used to identify which
gradient the data belongs to. The key is derived from the
unique key assigned by the ML framework to each dataflow
operator. If such as key is unavailable, users can explicitly set
it through KungFu’s collective communication API.

Named collective states. When receiving a named collective
message, a KungFu worker uses it to update its local named
collective state (see d). The worker extracts the key from the
message and identifies the state entry with the intermediate
collective communication. Each entry contains a data and a
control part: the data part is the buffer with the intermediate
collective communication result, e.g. max, min or sum, which
has been accumulated so far; the control part records how
many named collective messages have been processed and
which worker is the next hop to deliver the local intermediate
collective communication results. If the worker finds itself
as the last hop in the collective communication topology, it
returns the result to the dataflow.

KungFu minimises the memory footprint of the collec-
tive messages and states. Since KungFu targets synchronous
data parallel training, all asynchronous all-reduce operations
must have completed in one training iteration before start-

8

ing the next. This limits the number of concurrent collective
messages and states in memory. To further reduce memory
consumption, KungFu frees the states and messages when an
asynchronous all-reduce operation has completed. If possi-
ble, KungFu reuses buffers from the ML framework (Tensor-
Flow/PyTorch), and it uses a pool to recycle buffers.

4.4 Accelerating collective communication with NCCL

High-end deep learning servers have fast communication
links between GPUs (e.g. NVLink, which is 10× faster than
PCIe [57]) and fast network connectivity between servers (e.g.
GPU RDMA using InfiniBand). To speed up gradient com-
munication and monitoring, KungFu workers exploit these
fast links for collective communication.

In practice, users often employ NVLink and GPU RDMA
through the NCCL collective communication library [56].
NCCL provides a synchronous collective communication API,
following an MPI model [21]. At any time, an NCCL client
can only launch a single collective communication operation;
otherwise multiple NCCL operations interfere on the NVLink.
Existing NCCL-enabled systems (e.g. Horovod-NCCL [73])
therefore adopt a centralised master architecture to coordinate
distributed workers when using NCCL operations with gradi-
ents. This design, however, is not compatible with KungFu
because its collective communication layer has a decentralised
architecture.

Instead, KungFu workers use decentralised NCCL sched-
ulers. Each scheduler tracks which gradients are ready on
which GPU. The schedulers guarantee that gradients are pro-
cessed by each NCCL instance in the same order. In the first
training step, all NCCL schedulers monitor the order of gra-
dients produced by local dataflow computations. They gather
all orders and determine which order is most frequent. The
most-common order (named gradient order) is broadcast to
all schedulers. The schedulers must strictly follow the gra-
dient order when calling NCCL. This ensures that NCCL
schedulers launch collective communication for gradients
consistently, without a need for central coordination.

KungFu currently offloads all collective communication
requests, including those for gradient synchronisation and
monitoring, to its NCCL schedulers if NVLink and InfiniBand
are available locally. A future extension is to decide which
requests to offload based on latency requirements: gradient
monitoring could use asynchronous collective communication
to overlap with training as much as possible; and throughput-
intensive gradient synchronisation could use the NCCL-based
collective communication.

5 Adapting Parameters of Workers
In this section, we describe how KungFu uses APs to adapt
the parameters of its distributed workers.

5.1 Adapting dataflow parameters

Changing configuration parameters of a distributed ML sys-
tem introduces challenges. Most systems require static param-

all_reduce

gradients

#workers

tree

Communication layer
Configuration parameters

Dataflow

all_reduce

gradients

#workers

tree

Communication layer

Dataflow

b

Worker 0 Worker 1

a

c Detecting inconsistency and running barrier

Fig. 3: Parameters as configuration operators

eters, which can be treated as constants when compiling the
dataflow graph. After compilation, the dataflow graph is fi-
nalised and offloaded to GPUs for execution. Further changes
to parameters are thus no longer reflected in the dataflow.

Therefore, elastic ML systems, such as Horovod Elas-
tic [73] or Auto-Scaling [58], require users to use a dynamic
execution mode of the ML framework, e.g. the “eager” mode
in TensorFlow. The dynamic mode allows parameters to be
updated in each training step, but it prevents the dataflow from
being compiled, which results in large performance overheads.
In addition, elastic ML systems only support changes to cer-
tain parameters, such as the number of workers. Users must
still develop ad-hoc approaches when changing other parame-
ters, such as the communication topology.

KungFu’s design supports the online adaptation of dataflow
parameters, while allowing the dataflow graph to be compiled.
The core idea is that, instead of providing configuration pa-
rameters as static parameters when compiling the dataflow,
KungFu adds parameters as computational configuration oper-
ators as part of the dataflow graph. In each training step, these
configuration operators can dynamically alter their output by
reading configuration parameters provided by KungFu’s com-
munication layer. This is efficient because it reuses existing
data channels between the communication layer and the GPU.
APs can dynamically change the parameters in the commu-
nication layer, and the result is reflected within the dataflow
graph during execution.

Fig. 3 illustrates this idea. We assume that the dataflow
graph is used to average local gradients, and it computes the
sum of local gradients using an all-reduce operator. The AP
changes (i) the number of workers and (ii) their collective
communication topology. These two parameters are therefore
provided as dataflow configuration operators (see a) and are
used as the input to the all-reduce operator. During execution,
the operators read the corresponding configuration parame-
ters (see b) from the communication layer, and forward them
to the all-reduce operator.

5.2 Protecting consistency under adaptation

APs must be able to change the configuration parameters
in KungFu’s distributed communication layer. At runtime,
KungFu, however, must ensure that these parameters remain

9

Algorithm 1 Distributed adaptation algorithm for parameters
1: procedure DISTRIBUTEDADAPTATION(p,v)
2: b← bytes(v) . Convert v into byte array
3: l← length(b) . Get length of b
4: l0← allreduce(bytes(l),min) . byte-wise min
5: l1← allreduce(bytes(l),max) . byte-wise max
6: if l0 6= l1 then . byte-wise comparison
7: return false
8: end if
9: b0← allreduce(b,min)

10: b1← allreduce(b,max)
11: if b0 6= b1 then
12: return false
13: end if
14: p.update(v) . Call the update function of p
15: _← allreduce([′0′],min) . Run global barrier
16: return true
17: end procedure

consistent when read by the distributed dataflows on workers.
Making global parameter changes consistent with APs in-

troduces two requirements: (i) APs are replicated by workers
and executed in parallel. They hold local monitoring state
and can receive adaptation commands asynchronously. APs
can thus obtain inconsistent values for a given parameter,
especially in a large cluster in which many GPU workers
asynchronously read new parameter values with high fre-
quency. KungFu must have a mechanism to reject such incon-
sistent reads. In addition, (ii) when a consistent value is given,
KungFu workers assign this value to their local parameters in
parallel. The workers must then share a global barrier when
completing the assignment, which prevents the execution of
different dataflows with inconsistent values.

Distributed adaptation algorithm. We describe a dis-
tributed parameter adaptation algorithm that fulfils these re-
quirements. To execute with low latency, thus reducing the
time during which dataflow execution is blocked under adapta-
tion, it exploits the collective communication layer: since con-
figuration parameters are already hosted by that layer, KungFu
re-uses the highly optimised collective communication func-
tions to (i) detect inconsistent updates and (ii) implement a
global barrier (shown as c in Fig. 3).

Alg. 1 is executed by each KungFu worker when adapt-
ing a configuration parameter p with a new value v. It first
transforms v into a byte array so that it can be consumed
by an all-reduce function, together with a reduce function
such as min or max. After that, the algorithm launches two
all-reduce functions to check if the length of b is identical on
all workers (lines 4–7). If so, it calls another two all-reduce
functions to check if the content of b is consistent (lines 9–13).
If this check also passes, v can be safely used for updating
p (line 14). All workers must wait on a global barrier until
the updates have completed. The barrier is implemented by
calling an all-reduce function with a one-byte array (line 15).

Some parameters require custom adaptation logic other
than a simple value assignment. For example, changing the
number of workers requires workers to exit or join during

adaptation. To support this, Alg. 1 can invoke a custom func-
tion when updating a parameter (line 14). In the case of the
worker set, the function chooses one worker to signal other
workers to exit or launch.

Managing data under adaptation. APs can modify the
worker count and the batch size. These parameters affect how
the training dataset is read and thus the training result. To en-
sure consistent results under adaptation, all KungFu workers
have access to the full dataset.

KungFu supports two approaches to read data batches, de-
pending on if users require data epochs to control the training
process: (i) if data epochs are not needed, users can use ran-
dom sampling to read data batches, and the adaptation logic
can be triggered at any training step; (ii) with data epochs,
KungFu provides a dynamic data partitioning operator that
replaces the static partitioning operator (e.g. tf.data.shard)
in the data input pipeline (e.g. DataSet). The dynamic parti-
tioning operator is replicated on all KungFu workers and the
operators are synchronised to enact a new parallelism level
after a scaling operation. To preserve data epochs, users must
invoke the adaptation logic on epoch boundaries only.

Handling failures during adaptation. To tolerate fail-
ures, KungFu relies on a highly-available configuration
provider (e.g. ConfigMap in Kubernetes) to maintain its clus-
ter configuration. The configuration must be updated when
a scaling action is committed. In the case of worker failures,
the cluster scheduler uses the configuration to restart workers.

6 Evaluation
We experimentally explore the following aspects of the
KungFu design and implementation: (i) What are the benefits
of enabling adaptation in distributed ML training? (ii) What
is the monitoring and adaptation overhead in the training
process? (iii) How does KungFu perform in large clusters
compared to existing distributed ML systems?

6.1 Experimental set-up

We use both dedicated machines and cloud VMs in our ex-
periments: the dedicated machines are (i) an NVIDIA DGX-1
machine with 8 NVIDIA V100 GPUs interconnected using
NVLink, and 72 CPU cores; and (ii) a 20-CPU-core server
with 4 NVIDIA Titan X GPUs interconnected using the PCIe
bus. The cloud test-bed has 32 VMs, each with 8 vCPUs,
64 GB of memory and 1 NVIDIA K80 GPU.

We use various training workloads as part of the official
models provided by TensorFlow [1]: the MobileNetV2 [70]
and ResNet-50 [26] models for the ImageNet image classi-
fication task [37]; and the BERT [15] model for a natural
language processing task, SQuAD [67]. The MobileNetV2
model is 23 MB, ResNet-50 is 98 MB, and BERT is 1 GB in
size. These model sizes cover a large spectrum that users
observe in practice. We use TensorFlow v1.13.2 to train
the models. When possible, we compare the performance
to Horovod v0.16.1.

10

0 1000 2000 3000 4000 5000 6000
Time (seconds)

0
10
20
30
40
50
60
70
80
90

100

V
al

id
at

io
n

A
cc

ur
ac

y
(%

)

LBS Accuracy
SBS Accuracy
KungFu Accuracy
KungFu Batch Size

0
512
1024
1536
2048
2560
3072
3584
4096

B
at

ch
 S

iz
e

Fig. 4: Adaptive batch size
(ResNet-56)

20 40 60 80 100
Step

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
)

B
ac

k.
 T

ra
ffi

c

Baseline
KungFu

Fig. 5: Adaptive communication
strategy (ResNet-50)

0 500 1000 1500 2000 2500 3000 3500
Step

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (e

xa
m

pl
es

/s
ec

)

KungFu Throughput
Baseline Throughput
KungFu #GPUs
Baseline #GPUs

0

2

4

6

8

10

#G
P

U
s

Fig. 6: Adaptive resource provisioning
(BERT)

6.2 Adaptation policies

We evaluate three representative APs with KungFu that
change various aspects of distributed training:

(1) Adaptive batch size. We implement an AP that adapts the
batch size based on GNS when training the ResNet-56 model
with the CIFAR-10 dataset. To the best of our knowledge, this
AP is the first implementation that evaluates GNS-based batch
size tuning in an online training scenario. Past work [52] only
empirically evaluates it using offline training traces.

The AP computes GNS using an exponential moving av-
erage (α=0.1) and adapts the batch size every 10 epochs as
follows: if GNS has increased by a factor of r, it also scales
the batch size by r, up to 4096. We compare this AP with
two static baselines, which adopt fixed batch sizes of 128 and
4096, respectively. These baselines represent typical choices
for small batch size (SBS) and large batch size (LBS). In this
experiment, the model is trained for 300 epochs with a learn-
ing rate of 0.1, based on TensorFlow’s official model. The
training is done on the 4 GPU Titan X testbed, with batches
shared evenly across GPUs.

Fig. 4 shows the validation accuracy of the model over time.
LBS reaches a low validation accuracy (60%) but finishes
quickly. SBS reaches a higher validation accuracy (88%) but
the constant noise in gradients due to the small batches makes
it hard to converge, and the accuracy oscillates between 80%
and 90%. A typical issue of SBS is the underutilisation of
GPUs: SBS takes around 6000 s to complete training, 2.4×
longer than LBS. In practice, fixing the choice of batch size is
challenging for users—they have to trade off between model
accuracy and hardware utilisation.

The above AP addresses this challenge. As shown by the
right y-axis in Fig. 4, the policy dynamically increases the
batch size from 128 to 4096 based on GNS. This type of
adaptation improves model accuracy: it reaches 88% after
around 1000 s, 5× faster than SBS, and eventually converges
to 90% after 1300 s. Dynamically increasing the batch size
reduces the noise in gradients, which enables the model to
converge. Furthermore, it allows the model to better utilise
the hardware: the model spends only 400 s more than LBS
but achieves 30% higher accuracy.

(2) Adaptive communication strategy. Network infrastruc-
ture in cloud environments and multi-tenant clusters may
suffer from contention when using all-reduce operations to
synchronise gradients, and straggling workers may then slow

down the entire system [49]. To address this, we provide an
AP that monitors training throughput. If the throughput drops
due to network contention, the policy adjusts the topology
used by all-reduce, limiting the use of contended network
links. In this experiment, we train the ResNet-50 model for
100 steps on 32 VMs. After 25 steps, we introduce back-
ground traffic to create network contention. This mimics a
cloud environment in which there is dynamic interference in
an over-subscribed network.

We compare this AP with a static baseline that uses a fixed
all-reduce topology. We also attempted to implement a dy-
namic baseline using OpenMPI and NCCL, but these libraries
do not allow runtime control of the all-reduce topology.

Fig. 5 presents the average worker training throughput over
training steps. The baseline shows that the workers reach
6.5 images/s at the beginning but this number drops to 5.5 af-
ter the network becomes contended. The AP monitors the
throughput and detects network contention at step 35. It
adapts the communication topology, and the topology recov-
ers throughput: it increases to 7 images/s, even though the
background traffic is still on-going.

(3) Adaptive resource provisioning. Users want to decide
on a cost-effective number of GPUs when training models.
Using many GPUs leads to high training throughput but it
also increases cost. Large ML models are synchronising large
volumes of gradients. Above a certain amount of resources,
communication becomes a bottleneck. In such a case, using
more GPUs only gives a marginal performance improvement,
despite the higher cost.

We explore an AP that finds the most cost-effective number
of GPUs. This policy adds one worker every K steps. It then
evaluates the average total accumulated throughput and, if the
new throughput is not 1+α(1/size) times higher, it removes
the worker and stops scaling. We choose α=0.33 and K=400.
We compare to a static baseline that always uses the most
GPUs. We train the BERT model with a per-GPU batch size
of 8 on the 8 GPU V100 testbed.

Fig. 6 shows the results. When all 8 GPUs (right-hand
y-axis) are used from the beginning, the total throughput is
above 90 examples/second (left-hand y-axis). For KungFu,
we see that the throughput rises with the number of GPUs
until only a slight increase from 6 to 7 GPUs (step 2400).
Due to the small increase with 7 workers, KungFu removes
worker 7 at step 2800, stops scaling and resumes training

11

8 16 24 32
Difference of workers

0

20

40
La

te
nc

y
(m

ill
is

ec
on

d)

(a) Set tree latency

8 16 24 32
Difference of workers

10
0

10
2

La
te

nc
y

(s
)

KungFu
Baseline

(b) Scale in latency

8 16 24 32
Difference of workers

0

10

20

30

40

La
te

nc
y

(s
)

KungFu
Baseline
TF start-up

(c) Scale out latency

Fig. 7: Adaptation overhead

1 2 4 8
Monitoring interval

0
100
200
300
400
500

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
)

Ideal
Gradient Variance
Gradient Noise Scale

Fig. 8: Monitoring overhead

1 8 16 24 32
#VMs (1 GPUs per VM)

0

50

100

150

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
)

KungFu
Horovod

(a) MobileNetV2

1 8 16 24 32
#VMs (1 GPUs per VM)

0

25

50

75

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
)

KungFu
Horovod

(b) ResNet-50

Fig. 9: Worker throughput with different cluster sizes

with 6 workers. We use the price of a V100 GPU on Azure
to estimate the cost efficiency of KungFu and the baseline.
The baseline has a cost efficiency of 10,902 examples/USD,
and KungFu has 13,097 examples/USD. This indicates that
KungFu improves the cost efficiency of the job by 20%.

6.3 Adaptation overhead

Next we evaluate the overhead of adaptation and monitoring.
Adaptation. We evaluate the adaptation latency when chang-
ing the communication topology and worker set. We conduct
the experiments on the 32 VMs testbed and train ResNet-50.
During training, we repetitively change the parameters.

Fig. 7a shows the latency when changing worker commu-
nication topology. With 8 VMs, the adaptation completes in
15 ms. With 32 VMs, the delay only increases to 37 ms. This
shows the benefits of using the all-reduce function to imple-
ment the required consistency checking and global barrier
during adaptation.

Fig. 7b shows the latency when scaling down. We decrease
the number of workers from 32 to 1 by calling the resize
function. The function takes 0.2 s to complete. Scaling the sys-
tem using the checkpoint/recovery mechanism of TensorFlow
takes around 20 s to complete, 100× slower than KungFu.
This high latency is mainly due to the stop-and-resume time
of TensorFlow, and it is consistent with the observations made
by others [58, 82]. This result shows the need for supporting
efficient adaptation to enable scaling in practice.

Fig. 7c shows the latency when scaling out. Increasing the
number of workers from 1 to 32 takes 20 s, the same as the
baseline. Since KungFu must preserve the consistency of
the training state on workers, it must wait for new workers
to be started by TensorFlow. Breaking down this delay, we
can see that KungFu spends 0.5 s to complete the scale-out
operation, and waits the remaining 19.5 s for the TensorFlow

set-up. The long start-up time of TensorFlow can be masked
by implementing worker pre-loading [58].

Monitoring. We also consider the overhead when monitor-
ing two metrics, gradient noise scale (GNS) and gradient
variance (GV). The computation of GNS can reuse the av-
eraged gradients produced by the S-SGD computation and
thus can be computed locally without extra collective com-
munication; GV, however, compares the square of the sum of
gradients and the sum of gradient squares [78]. To compute
it, KungFu must launch an additional all-reduce operation for
each gradient. We monitor these two metrics when training
ResNet-50 for ImageNet on the 8 GPUs V100 testbed. We
vary the monitoring interval from 1–8 steps to change load.

Fig. 8 shows the average per-worker training throughput
with gradient monitoring. We compare it to the per-worker
throughput without monitoring (i.e. the ideal case). The mon-
itoring of GNS has a negligible impact on training, dropping
the training throughput from 6.3% to 1.0% based on the mon-
itoring interval. This shows that embedding the monitoring
operators as part of the dataflow graph results in low overhead.

The calculation of GV has a tangible throughput impact.
The overhead, however, can be amortised by increasing the
monitoring interval. The throughput drops by 2.8% when the
interval is 8 steps, while still providing acceptable monitoring
for APs. APs keep monitored metrics in data sketches and use
the accumulated result, usually every several epochs. Iterating
through an ImageNet dataset takes more than 40,000 steps,
which means that 5000 GV values in an epoch still make
estimation reliable.

6.4 Performance

Finally, we evaluate two aspects of KungFu that contribute to
overall performance: (i) the asynchronous collective commu-
nication layer and (ii) the NCCL scheduler.

12

Asynchronous Collective Communication Layer. We ex-
plore how the performance of KungFu’s communication
layer compares to Horovod [73], which is a popular high-
performance collective communication library used for dis-
tributed ML training. We compare the performance with 8,
16, 24 and 32 VMs. By varying the cluster size, we place
different loads on collective communication.

Fig. 9a shows the per-VM training throughput for Mo-
bileNetV2/ImageNet under KungFu and Horovod. With
8 VMs, Horovod and KungFu achieve the same throughput.
With 32 VMs, however, KungFu outperforms Horovod by
28% due to the benefits of its decentralised design for the com-
munication layer, which avoids the bottleneck of Horovod’s
master. We also note that Horovod shows a high variance
in the training throughput for 32 VMs (up to 24% between
min/max). This is caused by network jitter in the cloud en-
vironment affecting Horovod’s coordinator. Since KungFu
workers asynchronously exchange messages for collective
communication, they compensate for the network latency and
thus achieve stable training throughput even with 32 VMs.

Fig. 9b shows the per-VM training throughput for
ResNet50-ImageNet, which is 4× larger than MobileNetV2.
With this model, there is more network traffic, and KungFu
achieves 98% higher throughput than Horovod with 32 VMs.
This improvement is larger than in the case of MobileNetV2
because Horovod must execute collective communication in
order, following the MPI convention. KungFu, however, sup-
ports concurrent collective communication operations through
its named collective message and state mechanisms. This in-
creases concurrency in the communication layer, making it
achieve a higher throughput than Horovod, especially with
large models such as ResNet.

NCCL Schedulers. We also explore the benefit of the NCCL
schedulers in comparison to CPU-based collective communi-
cation (i.e. CPU all-reduce) and centralised NCCL scheduling,
as used by Horovod-NCCL. The experiment is executed on
the DGX-1 machine with all 8 NVIDIA V100 GPUs.

Fig. 10 shows the throughput with CPU-based collective
communication and NCCL as used by KungFu and Horovod,
respectively. For communication between GPUs on the same
machine, NCCL offers a significant performance benefit
for both KungFu and Horovod. Comparing KungFu and
Horovod with NCCL, we see that, for ResNet (~200 gradi-
ents; 97 MB size), KungFu and Horovod experience almost
identical performance; for BERT-base (~600 gradients; 1 GB
size), KungFu achieves 17% higher throughput than Horovod.

This difference can be attributed to the centralised nature
of Horovod’s NCCL scheduling. The central scheduler con-
tacts each worker to track which gradients have become avail-
able. When gradients are available on all workers, the sched-
uler calls an all-reduce operation to average gradients. The
scheduling overhead grows with the number of gradients, and
it becomes a bottleneck with many gradients (e.g. 600 gradi-
ents in BERT). A large number of gradients is increasingly

KungFu
CPU

KungFu
NCCL

Horovod
NCCL

0

100

200

300

Th
ro
ug
hp
ut

(s
am
pl
es
/s
ec
)

(a) ResNet-50

KungFu
CPU

KungFu
NCCL

Horovod
NCCL

0

10

20

30

Th
ro
ug
hp
ut

(s
am
pl
es
/s
ec
)

(b) BERT

Fig. 10: Training throughput

common because large models out-perform smaller ones.

7 Related Work

Distributed ML systems. A dataflow abstraction is used
in many ML systems, including TensorFlow, PyTorch [60],
MXNet [10], Caffe [30] and MindSpore [53]. These systems
share similar dataflow designs in which computational oper-
ators are used for tensor computation. Compiled dataflows
are offloaded to GPUs for the training computation. KungFu
reuses the dataflow abstraction to embed operators for the
purpose of adaptation.

KungFu uses collective communication functions to im-
plement monitoring and adaptation operations. Such func-
tions are available in most distributed ML systems, including
those built on top of MPI [1, 56, 73] as well as parameter-
server-based systems [8, 42]. Compared to existing collective
communication approaches, KungFu explores a decentralised
architecture that is tailored to supporting dataflows used in
ML frameworks. It allows multiple collective communication
operations to execute concurrently, making it different from
current MPI-compatible systems.

Hyper-parameter optimisation and tuning. To find the
best settings for hyper-parameters, practitioners and re-
searchers have proposed tuning systems [2, 17, 18, 35, 40, 45]
with associated search algorithms [28, 29, 33, 41]. These sys-
tems launch parallel training jobs to evaluate different candi-
date settings of target hyper-parameters. They often aim to
minimise resource consumption for finding the best setting. In
contrast, KungFu explores how to optimise hyper-parameters
continuously in a single training job. It thus proposes mecha-
nisms for efficient monitoring and online adaptation of hyper-
parameters during training. It can be used by existing tuning
systems to speed up the time of individual training jobs.

Elastic training systems have been proposed to improve the
resource utilisation of ML clusters. EDL [82] studies stop-

13

free scaling for TensorFlow workers, and Litz [65] proposes
an elastic training framework for ML clusters that consist of
parameter servers and training workers. Horovod Elastic [73]
and PyTorch Elastic [60] are two open-source elastic training
libraries. Compared to these dedicated elastic training sys-
tems, KungFu provides a unified framework that can execute
different adaptive training jobs efficiently.

Adaptation policies have been explored in streaming sys-
tems [20,22,27,61,62]. Dhalion [19] provides policy support
for Apache Storm, and its policies measure data analytics
metrics, such as latency and throughput; in contrast, APs in
KungFu enable the monitoring of gradients in ML systems.
Chi [51] is a control plane for stream processing systems, and
it supports online monitoring and adaptation. Compared to
Chi, KungFu provides a solution to build adaptive distributed
ML systems with high-performance gradient monitoring us-
ing dataflows and asynchronous collective communication.

Recently, practitioners have proposed adaptation poli-
cies [39, 58] tailored to ML systems. These policies use cost
models to infer the performance of a training system and make
scaling decisions in response. They could be implemented as
APs on top of KungFu to exploit its optimised adaptation and
communication infrastructure.

Monitoring training. The ML communities have recognised
the importance of monitoring training [71]. CrossBow [34]
monitors accelerator utilisation to infer the optimal level of
data parallelism when training models. Moreover, gradients
metrics are useful to optimise hyper-parameters [50]. There
have been efforts on setting the batch size according to signal-
to-noise ratios [12] and loss [5], or the learning rate based
on other gradient metrics, e.g. square norm of expectation of
gradients [16, 71, 74]. Due to the lack of support in current
distributed ML systems, such efforts typically only evaluate
efficacy using offline collected gradients. KungFu is inspired
by these efforts and addresses the missing systems support to
implement such proposals.

8 Conclusions
When training modern complex ML models, users want to
adapt a wide range of hyper- and system parameters. Existing
distributed ML systems were designed at a time when static
training regimes were the norm. They thus lack mechanisms
for monitoring training metrics and adapting configuration
parameters at runtime.

We have presented KungFu, a distributed training library
that allows users to specify and execute Adaptation Policies.
KungFu executes policies efficiently by embedding moni-
toring and configuration operators as part of the compiled
dataflow graph. All communication leverages efficient asyn-
chronous collective communication functions, without inter-
fering with the training process or compromising consistency.

Acknowledgements. We thank our shepherd, Derek Murray,
for his thoughtful and detailed comments on the paper.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek Gordon Murray, Benoit Steiner, Paul A.
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System
for Large-Scale Machine Learning. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 265–283, Savannah, GA, USA,
2-4 November 2016.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama. Optuna: A Next-
generation Hyperparameter Optimization Framework.
In 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), pages
2623–2631, Anchorage, AK, USA, 4-8 August 2019.

[3] Dario Amodei, Sundaram Ananthanarayanan, Rishita
Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Qiang Cheng, and Guo-
liang Chen. Deep Speech 2: End-to-End Speech Recog-
nition in English and Mandarin. In 33rd International
Conference on Machine Learning (ICML), volume 48
of Proceedings of Machine Learning Research, pages
173–182, New York, New York, USA, 20-22 June 2016.

[4] Jimmy Ba, Roger B. Grosse, and James Martens. Dis-
tributed Second-Order Optimization using Kronecker-
Factored Approximations. In 5th International Con-
ference on Learning Representations (ICLR), Toulon,
France, 24-26 April 2017.

[5] Lukas Balles, Javier Romero, and Philipp Hennig. Cou-
pling Adaptive Batch Sizes with Learning Rates. In Con-
ference on Uncertainty in Artificial Intelligence (UAI),
pages 410–419, 11-15 August 2017.

[6] L. Bottou, F. Curtis, and J. Nocedal. Optimization Meth-
ods for Large-Scale Machine Learning. SIAM Review,
60(2):223–311, 2018.

[7] Léon Bottou. On-line Learning and Stochastic Approxi-
mations. In On-line Learning in Neural Networks, pages
9–42. New York, NY, USA, 1998.

[8] ByteDance. BytePS - A High Performance and Generic
Framework for Distributed DNN Training. https://
github.com/bytedance/byteps, 2020.

[9] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal
Józefowicz. Revisiting Distributed Synchronous SGD.
CoRR, abs/1604.00981, 2016.

14

https://github.com/bytedance/byteps
https://github.com/bytedance/byteps

[10] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. MXNet: A Flexible and Efficient Ma-
chine Learning Library for Heterogeneous Distributed
Systems. CoRR, abs/1512.01274, 2015.

[11] François Chollet. Keras. https://keras.io, 2015.

[12] Soham De, Abhay Yadav, David Jacobs, and Tom Gold-
stein. Automated Inference with Adaptive Batches. In
20th International Conference on Artificial Intelligence
and Statistics (AISTATS), volume 54 of Proceedings
of Machine Learning Research, pages 1504–1513, Fort
Lauderdale, FL, USA, 20–22 Apr 2017.

[13] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc’aurelio Ranzato, An-
drew Senior, Paul Tucker, and Ke Yang. Large Scale
Distributed Deep Networks. In Advances in Neural
Information Processing Systems 25, pages 1223–1231.
2012.

[14] Aditya Devarakonda, Maxim Naumov, and Michael Gar-
land. AdaBatch: Adaptive Batch Sizes for Training
Deep Neural Networks. CoRR, abs/1712.02029, 2017.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding. In
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT), pages 4171–4186,
Minneapolis, MN, USA, 2-7 June 2019.

[16] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive
Subgradient Methods for Online Learning and Stochas-
tic Optimization. In 23rd Conference on Learning The-
ory (COLT), pages 257–269, Haifa, Israel, 27-29 June
2010.

[17] Raul Castro Fernandez, William Culhane, Pijika
Watcharapichat, Matthias Weidlich, Victoria Lopez
Morales, and Peter R. Pietzuch. Meta-Dataflows: Ef-
ficient Exploratory Dataflow Jobs. In International
Conference on Management of Data (SIGMOD), pages
1157–1172, Houston, TX, USA, 10-15 June 2018.

[18] Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Springenberg, Manuel Blum, and Frank Hutter. Ef-
ficient and Robust Automated Machine Learning. In
Advances in Neural Information Processing Systems 28,
pages 2962–2970. 2015.

[19] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram
Rao, and Karthik Ramasamy. Dhalion: Self-Regulating
Stream Processing in Heron. Proc. VLDB Endow.,
10(12):1825–1836, August 2017.

[20] Tom Z J Fu, Jianbing Ding, Richard T B Ma, Mari-
anne Winslett, Yin Yang, and Zhenjie Zhang. DRS:
Dynamic Resource Scheduling for Real-Time Analytics
over Fast Streams. In 35th International Conference
on Distributed Computing Systems (ICDCS), volume
2015-July, pages 411–420, Columbus, Ohio, USA, 29
June - 2 July 2015.

[21] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara
Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal
Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard
L. Graham, and Timothy S. Woodall. Open MPI: Goals,
concept, and design of a next generation MPI implemen-
tation. In Lecture Notes in Computer Science, volume
3241, pages 97–104, USA, 2004.

[22] Bugra Gedik, Scott Schneider, Martin Hirzel, and Kun-
Lung Wu. Elastic Scaling for Data Stream Processing.
IEEE Transactions on Parallel and Distributed Systems,
25(6):1447–1463, 2014.

[23] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour. CoRR,
abs/1706.02677, 2017.

[24] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan,
and Pritish Narayanan. Deep Learning with Limited Nu-
merical Precision. In 32nd International Conference on
Machine Learning (ICML), volume 37 of JMLR Work-
shop and Conference Proceedings, pages 1737–1746,
Lille, France, 6-11 July 2015.

[25] Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei,
Gregory R Ganger, Phillip B Gibbons, Garth A Gibson,
and Eric P Xing. Addressing the Straggler Problem for
Iterative Convergent Parallel ML. In 7th ACM Sympo-
sium on Cloud Computing (SoCC), pages 98–111, 5-7
October 2016.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, Las Vegas, NV,
USA, 27-30 June 2016.

[27] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko
Borisov, Liang Dong, Fatma Bilgen Cetin, and Shivnath
Babu. Starfish: A Self-tuning System for Big Data Ana-
lytics. In 5th Biennial Conference on Innovative Data
Systems Research (CIDR), pages 261–272, Asilomar,
CA, USA, 9-12 January 2011.

[28] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wo-
jciech M. Czarnecki, Jeff Donahue, Ali Razavi, Oriol

15

https://keras.io

Vinyals, Tim Green, Iain Dunning, Karen Simonyan,
Chrisantha Fernando, and Koray Kavukcuoglu. Pop-
ulation Based Training of Neural Networks. CoRR,
abs/1711.09846, 2017.

[29] Kevin Jamieson and Ameet Talwalkar. Non-stochastic
Best Arm Identification and Hyperparameter Optimiza-
tion. In 19th International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 51 of Pro-
ceedings of Machine Learning Research, pages 240–248,
Cadiz, Spain, 9-11 May 2016.

[30] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross B. Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional
Architecture for Fast Feature Embedding. In ACM Inter-
national Conference on Multimedia (MM), pages 675–
678, Orlando, FL, USA, 03-07 November 2014.

[31] Tyler B. Johnson, Pulkit Agrawal, Haijie Gu, and Carlos
Guestrin. AdaScale SGD: A User-Friendly Algorithm
for Distributed Training. CoRR, abs/2007.05105, 2020.

[32] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws
for Neural Language Models. CoRR, abs/2001.08361,
2020.

[33] Zohar Karnin, Tomer Koren, and Oren Somekh. Al-
most Optimal Exploration in Multi-Armed Bandits. In
30th International Conference on Machine Learning
(ICML), volume 28 of Proceedings of Machine Learn-
ing Research, pages 1238–1246, Atlanta, Georgia, USA,
17-19 June 2013.

[34] Alexandros Koliousis, Pijika Watcharapichat, Matthias
Weidlich, Luo Mai, Paolo Costa, and Peter Pietzuch.
Crossbow: Scaling Deep Learning With Small Batch
Sizes on Multi-Gpu Servers. Proceedings of the VLDB
Endowment, 12(11):1399–1412, 2019.

[35] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank
Hutter, and Kevin Leyton-Brown. Auto-WEKA 2.0:
Automatic Model Selection and Hyperparameter Op-
timization In WEKA. Journal of Machine Learning
Research, 18(25):1–5, 2017.

[36] Alex Krizhevsky. Learning Multiple Layers of Fea-
tures from Tiny Images. Technical report, University of
Toronto, 2009.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. ImageNet Classification with Deep Convolutional
Neural Networks. In Advances Neural Information Pro-
cessing Systems 24, pages 1097–1105, USA, 2012.

[38] Anders Krogh and John A. Hertz. A Simple Weight
Decay Can Improve Generalization. In Advances in
Neural Information Processing Systems 4, pages 950–
957. 1992.

[39] Woo-Yeon Lee, Yunseong Lee, Joo Seong Jeong,
Gyeong-In Yu, Joo Yeon Kim, Ho Jin Park, Beomyeol
Jeon, Wonwook Song, Gunhee Kim, and Markus
Weimer. Automating System Configuration of Dis-
tributed Machine Learning. In 39th International Con-
ference on Distributed Computing Systems (ICDCS),
pages 2057–2067, Dallas, Texas, USA, 7-9 July 2019.
IEEE.

[40] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekate-
rina Gonina, Jonathan Ben-tzur, Moritz Hardt, Benjamin
Recht, and Ameet Talwalkar. A System for Massively
Parallel Hyperparameter Tuning. In Machine Learning
and Systems (MLSys), pages 230–246. 2-4 March 2020.

[41] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimiza-
tion. J. Mach. Learn. Res., 18(1):6765–6816, January
2017.

[42] Mu Li, David G Andersen, Jun Woo Park, Alexander J
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J Shekita, and Bor-Yiing Su. Scaling Distributed
Machine Learning With the Parameter Server. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 583–598, Broomfield,
CO, USA, 6-8 October 2014.

[43] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J.
Smola. Efficient Mini-batch Training for Stochastic
Optimization. In 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(DMKD), pages 661–670, New York, NY, USA, 2014.

[44] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asyn-
chronous Decentralized Parallel Stochastic Gradient De-
scent. In 35th International Conference on Machine
Learning (ICML), volume 80, pages 3043–3052, Stock-
holm, Sweden, 10-15 July 2018.

[45] Richard Liaw, Eric Liang, Robert Nishihara, Philipp
Moritz, Joseph E. Gonzalez, and Ion Stoica. Tune: A
Research Platform for Distributed Model Selection and
Training. CoRR, abs/1807.05118, 2018.

[46] Haibin Lin, Hang Zhang, Yifei Ma, Tong He, Zhi Zhang,
Sheng Zha, and Mu Li. Dynamic Mini-batch SGD for
Elastic Distributed Training: Learning in the Limbo of
Resources. CoRR, abs/1904.12043, 2019.

16

[47] Jinlong Liu, Guoqing Jiang, Yunzhi Bai, Ting Chen, and
Huayan Wang. Understanding Why Neural Networks
Generalize Well Through GSNR of Parameters. CoRR,
abs/2001.07384, 2020.

[48] Maren Mahsereci and Philipp Hennig. Probabilistic
Line Searches for Stochastic Optimization. In Advances
in Neural Information Processing Systems 28, pages
181–189. 2015.

[49] Luo Mai, Chuntao Hong, and Paolo Costa. Optimizing
Network Performance in Distributed Machine Learn-
ing. In 7th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), Santa Clara, CA, USA, 6-7 July
2015.

[50] Luo Mai, Alexandros Koliousis, Guo Li, Andrei-
Octavian Brabete, and Peter R. Pietzuch. Taming Hyper-
parameters in Deep Learning Systems. ACM SIGOPS
Oper. Syst. Rev., 53(1):52–58, 2019.

[51] Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh,
Shivaram Venkataraman, Paolo Costa, Terry Kim, Sara-
vanan Muthukrishnan, and Vamsi Kuppa. Chi: A Scal-
able and Programmable Control Plane for Distributed
Stream Processing Systems. Proceedings of the VLDB
Endowment, 11(10):1303–1316, 2018.

[52] Sam McCandlish, Jared Kaplan, Dario Amodei, and
OpenAI Dota Team. An Empirical Model of Large-
Batch Training. CoRR, abs/1812.06162, 2018.

[53] MindSpore. Mindspore Deep Learning Train-
ing/Inference Framework. https://github.com/
mindspore-ai/mindspore, 2020.

[54] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. PipeDream:
Generalized Pipeline Parallelism For DNN Training. In
27th ACM Symposium on Operating Systems Principles
(SOSP), pages 1–15, Huntsville, ON, Canada, 27-30 Oc-
tober 2019.

[55] NVIDIA. Data Center Deep Learning Product
Performance. https://developer.nvidia.com/
deep-learning-performance-training-inference,
2020.

[56] NVIDIA. Optimized Primitives for Collective Multi-
GPU Communication. https://github.com/NVIDIA/
nccl, 2020.

[57] NVIDIA. The Building Blocks of Advanced Multi-GPU
Communication. https://www.nvidia.com/en-us/
data-center/nvlink/, 2020.

[58] Andrew Or, Haoyu Zhang, and Michael J. Freedman.
Resource Elasticity in Distributed Deep Learning. In
Machine Learning and Systems (MLSys), Austin, TX,
USA, 2-4 March 2020.

[59] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira
Naruse, Rio Yokota, and Satoshi Matsuoka. Large-
Scale Distributed Second-Order Optimization Using
Kronecker-Factored Approximate Curvature for Deep
Convolutional Neural Networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 12359–12367, Long Beach, CA, USA, 16-20 June
2019.

[60] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, and Luca Antiga. Py-
Torch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. 2019.

[61] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin,
Jiexi Lin, Lin Ma, Prashanth Menon, Todd C. Mowry,
Matthew Perron, Ian Quah, Siddharth Santurkar, An-
thony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang,
Yingjun Wu, Ran Xian, and Tieying Zhang. Self-Driving
Database Management Systems. In 8th Biennial Con-
ference on Innovative Data Systems Research (CIDR),
Chaminade, CA, USA, 8-11 January 2017.

[62] Thao N. Pham, Panos K. Chrysanthis, and Alexandros
Labrinidis. Avoiding Class Warfare: Managing Con-
tinuous Queries With Differentiated Classes of Service.
VLDB J., 25(2):197–221, 2016.

[63] Boris Polyak. Some Methods of Speeding up the Conver-
gence of Iteration Methods. Ussr Computational Math-
ematics and Mathematical Physics, 4:1–17, 12 1964.

[64] Prometheus. The Prometheus Monitoring System
and Time Series Database. https://github.com/
prometheus/prometheus, 2019.

[65] Aurick Qiao, Abutalib Aghayev, Weiren Yu, Haoyang
Chen, Qirong Ho, Garth A. Gibson, and Eric P. Xing.
Litz: Elastic Framework for High-Performance Dis-
tributed Machine Learning. In USENIX Annual Tech-
nical Conference (ATC), pages 631–644, Boston, MA,
11-13 July 2018.

[66] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. ZeRO: Memory Optimization To-
wards Training A Trillion Parameter Models. CoRR,
abs/1910.02054, 2019.

[67] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know
What You Don’t Know: Unanswerable Questions for

17

https://github.com/mindspore-ai/mindspore
https://github.com/mindspore-ai/mindspore
https://developer.nvidia.com/deep-learning-performance-training-inference
https://developer.nvidia.com/deep-learning-performance-training-inference
https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://github.com/prometheus/prometheus
https://github.com/prometheus/prometheus

SQuAD. In 56th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 784–789,
Melbourne, Australia, 15-20 July 2018.

[68] Herbert Robbins and Sutton Monro. A Stochastic Ap-
proximation Method. Ann. Math. Statist., 22(3):400–
407, 09 1951.

[69] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[70] Mark Sandler, Andrew G. Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 4510–4520, Salt Lake City, UT,
USA, 18-22 June 2018.

[71] Tom Schaul, Sixin Zhang, and Yann LeCun. No More
Pesky Learning Rates. In 30th International Conference
on Machine Learning (ICML), volume 28 of Proceed-
ings of Machine Learning Research, pages 343–351,
Atlanta, Georgia, USA, 17-19 June 2013.

[72] Vetter Scott, Elpelt Tobias, Franke Rico, and Mi-
randa Yanil Z. Networking Design for HPC and AI
on IBM Power Systems (Red Paper), IBM PowerAI Dis-
tributed Deep Learning. http://www.redbooks.ibm.
com/redpapers/pdfs/redp5478.pdf, April 2018.

[73] Alexander Sergeev and Mike Del Balso. Horovod: Fast
and Easy Distributed Deep Learning in TensorFlow.
CoRR, abs/1802.05799, 2018.

[74] Ravid Shwartz-Ziv and Naftali Tishby. Opening the
Black Box of Deep Neural Networks via Information.
CoRR, abs/1703.00810, 2017.

[75] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, and Marc Lanctot. Mastering the Game of Go
With Deep Neural Networks and Tree Search. Nature,
529:484–503, 2016.

[76] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V.
Le. Don’t Decay the Learning Rate, Increase the Batch
Size. CoRR, abs/1711.00489, 2017.

[77] Samuel L. Smith and Quoc V. Le. A Bayesian Perspec-
tive on Generalization and Stochastic Gradient Descent.
In 6th International Conference on Learning Represen-
tations (ICLR), Vancouver, BC, Canada, 30 April - 3
May 2018.

[78] Y. Tsuzuku, Hi. Imachi, and T. Akiba. Variance-based
Gradient Compression for Efficient Distributed Deep
Learning. In 6th International Conference on Learn-
ing Representations (ICLR), Vancouver, BC, Canada, 30
April - 3 May 2018.

[79] Marcel Wagenländer, Luo Mai, Guo Li, and Peter R.
Pietzuch. Spotnik: Designing Distributed Machine
Learning for Transient Cloud Resources. In 12th
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud), 13-14 July 2020.

[80] Guanhua Wang, Shivaram Venkataraman, Amar Phan-
ishayee, Jorgen Thelin, Nikhil R. Devanur, and Ion Sto-
ica. Blink: Fast and Generic Collectives for Distributed
ML. CoRR, abs/1910.04940, 2019.

[81] Pijika Watcharapichat, Victoria Lopez Morales,
Raul Castro Fernandez, and Peter Pietzuch. Ako:
Decentralised Deep Learning with Partial Gradient
Exchange. In 7th ACM Symposium on Cloud Computing
(SoCC), SoCC ’16, pages 84–97, New York, NY, USA,
5-7 October 2016.

[82] Yidi Wu, Kaihao Ma, Xiao Yan, Zhi Liu, and James
Cheng. Elastic Deep Learning in Multi-Tenant GPU
Cluster. CoRR, abs/1909.11985, 2019.

[83] Yang You, Jonathan Hseu, Chris Ying, James Demmel,
Kurt Keutzer, and Cho-Jui Hsieh. Large-Batch Training
for LSTM and Beyond. In International Conference for
High Performance Computing, Networking, Storage and
Analysis (SC), pages 9:1–9:16, Denver, Colorado, USA,
17-19 November 2019.

[84] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali
Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
Fen Xie, and Corey Zumar. Accelerating the Machine
Learning Lifecycle with MLflow. IEEE Data Engineer-
ing Bulletin, 41(4):39–45, 2018.

[85] Michael R. Zhang, James Lucas, Jimmy Ba, and Geof-
frey E. Hinton. Lookahead Optimizer: k Steps Forward,
1 Step Back. In Advances in Neural Information Pro-
cessing Systems 32, pages 9593–9604, Vancouver, BC,
Canada, 8-14 December 2019.

18

http://www.redbooks.ibm.com/redpapers/pdfs/redp5478.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp5478.pdf

	Introduction
	Adaptation in ML Systems
	Parameters in distributed ML systems
	Setting parameters in ML systems
	Dynamic adaptation of parameters
	Open challenges

	Adaptation Policies
	Overview
	Sample AP for batch size adaptation
	Adaptation Policy interface
	Practical considerations

	Supporting Monitoring in KungFu
	Design overview
	Embedding monitoring within dataflows
	Collective communication for dataflows
	Accelerating collective communication with NCCL

	Adapting Parameters of Workers
	Adapting dataflow parameters
	Protecting consistency under adaptation

	Evaluation
	Experimental set-up
	Adaptation policies
	Adaptation overhead
	Performance

	Related Work
	Conclusions

